COMANCHE COUNTY OKLAHOMA

2040 LONG RANGE TRANSPORTATION PLAN

Prepared by:

Southwest Oklahoma Regional Transportation Planning Organization

Bldg. 420 Sooner Drive
Burns Flat, OK 73624
580-562-4882
800 W. Main St.
Duncan, OK 73533
580-252-0595
www.sortpo.org
In cooperation with:
Cities and Towns of Comanche County
Oklahoma Department of Transportation
Federal Highways Administration
Southern Resource Center, Bureau of Indian Affairs
Comanche Tribe
Association of South Central Oklahoma Governments
South Western Oklahoma Development Authority

Publication of this document was financed in part by funds provided by the United States Department of Transportation, Federal Highway Administration. The provision of federal financial assistance should not be construed as denoting U.S. Government approval of plans, policies, programs or projects contained herein.

The Southwest Oklahoma Regional Transportation Planning Organization (SORTPO) complies with all civil rights provisions of federal statues and related authorities that prohibit discrimination in programs and activities receiving federal financial assistance. Therefore, SORTPO does not discriminate on the basis of race, sex, color, national origin, religion or disability, in the admission, access to and treatment in SORTPO programs and activities.

Resolution No. 2019-7 Adopting the 2040 Comanche County 2040 Long Range Transportation Plan

Whereas, the South Western Oklahoma Development Authority by Resolution 09-04 created the Southwest Oklahoma Regional Transportation Ilanning Organization (SORTI ${ }^{3}$); and

Whereas, through a Resolution 16-06 the South Western Oklahoma Development Auchority expanded the regional transportation plaming area to include the Association of South Central Oklahoma Governments (ASCOG), and

Whereas, SORTPO is taskel with developing a regional long range transportation plan: and

Whereas, the long range tramsportation plan chahlishes goal anul transportalion stratcgies addressing the region's needs; and

Whereas, the 2040 Comanche County Long Range Transportation Plan (LRTP) was prepared by SORPTO in consultation with memher, state and federal transpotation agencics; and

Whereas, the Plan has been presented to the yeneral public for rovicw and comment in accorslance with the SORTPO Public Participation Ilan and the Plan was posted on the SORTPO wobsite for public revicw and comment (August 26, 2019 - September 24, 2019); and

Whercas, the Plan has heen prepared in accoriance with all relative stane and federal rules and regulations.
NOW, TIIEREFORE BE IT RESOLVED, that the SORPTO Policy Board hercby appones and athopts the 2040 Comanche County 2040 Lone Range Transprortation Plan.
Approved and Adoptet by SORTPO Folicy Roard and sigued this $26^{\text {ti }}$ day of September 2019.
Fye Miller, Charman SORTPO Policy Board
ATTEST: Unata
Anita Archer. Sccreary SORTPO Policy Board

Contents

Chapter 1: Goal, Strategies and Issues 1
SORTPO History 1
Map 1.1: SORTPO Region 2
Regional Transportation Planning 2
Purpose of Plan 3
Relationship and Requirements with State and Federal Agencies. 4
Table 1.1: Planning Factors 4
Goals and Strategies 5
Table 1.2: Comanche County Goal Categories 5
Goal 1: Accessibility and Mobility. 6
Goal 2: Awareness, Education and Cooperative Process 7
Goal 3: Freight \& Economic Vitality 7
Goal 4: Environment 8
Goal 5: Finance and Funding 8
Goal 6: Maintenance and Preservation 8
Goal 7: Safety and Security 9
Goal 8: Community \& Health 9
Goal 9: Tourism \& Travel. 9
Key Issues, Challenges and Trends 10
Chapter 2; Current Conditions 12
History 12
Map 2.1: Comanche County, Oklahoma 16
Table 2.1: Comanche County Population 1980-2017 ACS Estimate 17
Figure 2.1: Comanche County, Civilian Labor Force 1990-2018 (November) 19
Figure 2.2: Comanche County Business Patterns, 2010 and 2016 20
Figure 2.3: Comanche County Motor Vehicle Registration, 2012-2018 21
Traffic Analysis Zones 21
Map 2.2: Comanche County Traffic Analysis Zones 23
Map 2.3: Cache Traffic Analysis Zones 24
Map 2.4: Elgin Traffic Analyses Zones 25
Map 2.5: Fletcher Traffic Analyses Zones 26
Map 2.6: Geronimo Traffic Analysis Zones 27
Map 2:7: Sterling Traffic Analysis Zones. 28
Physical Development Constraints and Conditions 29
Map 2.11: Tribal Jurisdictions in Oklahoma 29
Historic, Natural or Man Made Significant Features 29
Public Safety Issues 30
Collisions 31
Table 2.2: Comanche County Collision Total, 2012-2017 31
Table 2.3: Comanche County Collisions by Road Type, 2012-2017, 32
Table 2.4: Comanche County Collision Concentration, 2012-2017 32
Map 2.12: Comanche County 2012-2017 Collision Map 3434
Existing Road Network. 35
Traffic Count. 35
Functional Classification and Road Systems 35
Bridges 36
Traffic Control 37
Freight System 37
Table 2.5: Comanche County Significant Freight Corridors. 37
Map 2.13: National Highway Freight Network 38
Map 2.14: Regionally Significant Freight Routes 39
Figure 2.5 Average Daily Long-Haul Traffic on NHS 2011 40
Map 2.15: Oklahoma High Volume Truck Corridors 41
Map 2.16: Port of Entry. 42
Railroads 42
Bicycle \& Pedestrian System 43
Public Transit 43
Airports. 44
Table 2.6: SORPTO Public Airports 44
Areas of Concern 45
Table 2.7:Comanche County Transportation Areas of Concern 45
Chapter 3: Future Conditions and Improvements. 50
Future Conditions 50
Figure 3.1: Projected Average Daily Long-Haul Traffic on NHS 2040. 51
2040 Transportation Funding and Improvements 52
Federal. 52
State 53
County 53
Local 54
Table 3.1: Apportionment of Statutory Revenues - Funding Categories. 55
Table 3.2: Comanche County Future Transportation Projects 56
Chapter 4: Public Participation 57
Environmental Justice 57
Coordination with Other Plans 57
Chapter 5: Transportation Recommendations 59
Transportation Projects 59
Table 5.1: Comanche County Transportation Projects. 60
APPENDICES. 64
Acronyms 65
Definitions 68
Appendix A: Resolution 09-04 71
Appendix B: Resolution 16-06 72
Appendix C: Performance Measures 73
Appendix 2.1: Comanche County, Demographic Information, 2013-2017 ACS 75
Appendix 2.2: Comanche County, Occupation by Sex 2013-2017 ACS 75
Appendix 2.3: Comanche County Industry by Sex, 2013-2017 ACS 77
Appendix 2.4: Comanche County Educational Attainment 2013-2017, ACS 78
Appendix 2.5: Comanche County, Housing Units and Vehicles Available 2013-2017
ACS 79
Appendix 2.6: Comanche County Means of Transportation, 2013-2017 ACS 81
Appendix 2.7: Comanche County Selected Economic, 2013-2017 ACS 82
Appendix 2.8: Comanche County Population and Employment by TAZ 84
Appendix 2.9: Comanche County Major Employers, 2018 86
Appendix 2.10: Environmental and Development Concerns. 89
Appendix 2.11: Comanche County Environmental Features 90
Appendix 2,12: Comanche County Type of Collision Total, 2012-2017. 90
Appendix 2.13: Comanche County Collision Vehicles by Vehicle Type, Total, 2012- 2017. 91
Appendix 2.14: Two Lane Highways Without Paved Shoulders. 92
Appendix 2.15: Steep Hills and Sharp Curves 92
Appendix 2.16: Comanche County Annual Average Daily Traffic Count 2018 94
Appendix 2.17: Functional Classification and Road Systems 95
Appendix 2.18: Comanche County Functional Classification 98
Appendix 2.19: Oklahoma Structurally Deficient and Functionally Obsolete Bridges 99
Appendix 2.20: Comanche County On System Bridges with Sufficiency Rate 100
Appendix 2.21: Comanche County Off System Bridges. 115
Appendix 2.22: National Highway Freight Network - Oklahoma 126
APPENDIX 3: FUTURE CONDITIONS 128
Appendix 3.1: 2040 Population and Employment Projection by TAZ 128
Appendix 3.2: ODOT 8 Year Construction Work Program FFY 2019-2026 Map 130
Appendix 4: Public Participation 131
Appendix 4.1: Public Survey 131
Appendix 4.2: Pubic Outreach 147
Stakeholder Invitation Letter 148
Public Review and Comments 149

Chapter 1: Goal, Strategies and Issues

SORTPO History

In 1970, Oklahoma's governor established eleven (11) sub-state planning districts. Subsequently, the local governments served by the planning districts created the eleven (11) Councils of Governments (COGs) using the sub-state planning district boundaries. These districts make up the Oklahoma Association of Regional Councils (OARC). South Western Oklahoma Development Authority (SWODA) and the Association of South Central Oklahoma Governments are two of the eleven (11) COGs.

In April 2012, the Oklahoma Department of Transportation (ODOT) entered an agreement with OARC to oversee development of the regional transportation planning process and the regional public participation process in the non-metropolitan areas of the state. Three councils of governments were selected as pilot projects: SWODA, Northern Oklahoma Development Authority (NODA) and Central Oklahoma Economic Development District (COEDD). SWODA on October 13 th, 2009 by Resolution 09-04 (Appendix A) created the Southwest Oklahoma Regional Transportation Planning Organization (SORTPO) and was tasked with the responsibility of developing a regional plan that included preparation of eight (az8) county plans. In Federal Fiscal Year (FFY) 2016, through a collaborative effort involving SORTPO, the Association of South Central Oklahoma Governments (ASCOG) and the ODOT a transportation planning pilot project comprising sixteen counties was initiated representing two Councils of Governments SWODA and ASCOG. The SWODA Board of Trustees adopted Resolution 16-06 (Appendix B) amending the SORTPO region.

Located in southwest Oklahoma, the SORTPO region is comprised of 14,180 square miles. (Map 1.1). The SORTPO region is comprised of sixteen (16) counties, one hundred-twenty (120) cities and towns and nineteen (19) conservation districts. Total population for the SORTPO region according to the 2010 U.S. Census Bureau was 416,257. Population data obtained from the 2012-2016 American Community Survey (ACS) estimates the population has increased to 421,747 . Although much of the region is comprised of large tracts of farming and agriculture lands there are multiple areas that contain urbanized areas that feature regional medical facilities, universities, military installations and governmental offices. Population growth and shifts for the SORTPO region are dependent on many factors depending
 on a county. Each County in the region although a separate entity is interconnected through commerce, employment, health services, education and transportation.

All aspects of the planning process are overseen by the SORTPO Policy Board. The SORTPO Technical Committee serves as the advisory group for transportation planning and policy initiatives. This committee reviews transportation planning work efforts and provides a recommendation to the SORTPO Policy Board for their consideration and action. The day-to-day activities of SORTPO are supported by staff located in the SWODA (Burns Flat) and

ASCOG (Duncan) offices. Staff, equipment, supplies, rent, consulting studies, and other expenses used to support staffing operations are reimbursable to SORTPO by the Federal Highway Administration (FHWA) State Planning \& Research (SPR) program funds at 80\% of the total amount of the work effort and the local match of 20% is provided by SWODA.

Map 1.1: SORTPO Region

Source: SWODA

Regional Transportation Planning

Regional transportation planning is a collaborative process designed to foster participation by all interested parties such as business communities, community groups, elected officials, and the public through a proactive public participation process. Emphasis by the FHWA and the Federal Transit Administration (FTA) is placed on extending public participation to include people who have been traditionally underserved by the transportation system and services in the region.

The purpose of the transportation system is to move people and goods in the safest and most efficient manner possible. SORTPO envisions the transportation system as a critical element of the quality of life for the citizens. A regional approach to long range transportation planning is necessary because of the rural nature and diverse characteristics of the population in Oklahoma. Transportation systems must safely, efficiently and effectively allow citizens to travel to work and to conduct their personal lives as well as provide for the efficient movement of goods to markets to support the county's economic vitality. Additionally, transportation decisions should carefully consider and reflect environmental and community concerns.

Transportation planning is a process that develops information to help make decisions on the future development and management of transportation systems. It involves the determination of the need for new or expanded roads, transit systems, freight facilities and bicycle/pedestrian facilities their location, their capacity and the future needs. The process of developing the LRTP provides an opportunity for participating in the planning of the future transportation system. The process allows the community to focus their attention on transportation in the context of Comanche County as well as the SORTPO region. The LRTP was developed within the regulatory framework of Moving Ahead for Progress in the 21st Century (MAP-21) and the Fixing America's Surface Transportation Act (FAST Act). The LRTP establishes the goals, objectives and transportation
 strategies for addressing the region's transportation needs. The LRTP establishes the goals, objectives and transportation strategies for addressing the region's transportation needs. This planning process follows the three "c's" identified by federal transportation regulations: continuing, cooperation and comprehensive.

Purpose of Plan

The 2040 Comanche County LRTP is a document used by the county, cities, towns, agencies, businesses and residents as a guide to maintain and improve the region's transportation system through 2040. The year 2040 was chosen as the planning horizon year for the LRTP for the following reasons:

- The year 2040 is far enough into the future to allow for the anticipated growth of the area to be implemented and
- Allows the local governments and participating agencies to plan for long range solutions to anticipated needs.

The Plan is an important tool and assists communities in focusing their limited funds on projects that give them the best value and benefit for funding. The purpose of the longrange transportation plan is to direct investment of available resources toward meeting the region's highest priority needs. The needs are determined by comparing the Plan's goals, "What do we want to accomplish over the life of the plan?" with current conditions and forecasts, "Where are we starting, and how are demographics and economics expected to change?" The projects and strategies included in the LRTP arise from the needs and span the twenty-year planning period.

A key concept that underlies the discussion of needs is affordability. With limited fiscal resources, every jurisdiction that owns and operates part of the countywide transportation system must consider what they can afford to operate and how to maintain into
 the future.
People of all ages are making different decisions about where they choose to live, and what constitutes a positive quality of life. SORTPO's transportation planning process includes opportunities for the community's transportation stakeholders
to participate in development of the LRTP. This process includes soliciting comments from the public on current and future transportation needs. Appendix 4.1 illustrates survey results obtained during the planning process. Survey Question 12 includes information on the importance of selected transportation components in Comanche County. Three components received the highest rating: maintenance improvements, bridge improvements, and smooth driving surface. When selecting projects survey respondents indicated in Question 13 a higher preference for projects that improve safety, improves travel choices, improves freight movements and congestion and supports economic development.

As a means of achieving the successful implementation of the LRTP, the projects are developed in five-year increments. The five-year increment format will offer realistic goals in Chapter 5 relative to the LRTP's short range implementation activities. The incremental approach also provides a reasonable opportunity in scheduling state and /or federally funded transportation improvements within the county.

Relationship and Requirements with State and Federal Agencies

The plan was developed in cooperation and in collaboration with municipal, county governments, transit providers, ODOT and FHWA. The plan is the culmination of a continuing, cooperative, coordinated and comprehensive planning effort among the federal, state and local governments directed by SORTPO that provides for consideration and implementation of projects, strategies and services that should address the planning factors identified in MAP-21 and the FAST Act was signed into law in December 2015. The FAST Act added two additional factors for a total of ten (Table 1.1), which SORTPO should strive to address through their LRTP planning process.

Table 1.1: Planning Factors

1. Support the economic vitality of the United States, the States, nonmetropolitan areas, and metropolitan areas, especially enabling global competitiveness, productivity and efficiency.
2. Increase the safety of the transportation system for motorized and non-motorized users.
3. Increase the security of the transportation system for motorized and non-motorized users.
4. Increase accessibility and mobility of people and freight.
5. Protect and enhance the environment, promote energy conservation, improve the quality of life, and promote consistency between transportation improvements and State and local planned growth and economic patterns.
6. Enhance the integration and connectivity of the transportation system across and between modes, people and freight.
7. Promote efficient system management and operation.
8. Emphasize the preservation of the existing transportation system.
9. Improve the resiliency and reliability of the transportation system and reduce or mitigate stormwater impacts of surface transportation.
10. Enhance travel and tourism

Source: 23 USC Section 23 U.S.C. 135 (d)(1)
In addition, The FAST Act continues MAP-21 requirement to State Departments of Transportation and Metropolitan Planning Organizations to use a performance-based approach to support seven (7) national goals for the transportation system. This requirement has not been mandated to non-metropolitan areas. Though specific performance measures are not identified in this plan, SORTPO recognizes the significance of such measures and will begin the collection of data needed to establish standards in future (Appendix C).

Goals and Strategies

The planning process follows a hierarchy that includes goals and strategies to assist Comanche County in planning and prioritization of transportation projects and programs. Goals are general statements of what we want the future to be like. The goals are used as guiding principles to choose among various options for transportation improvements. Therefore, they should be attainable and realistic. In addition, the goals should relate to present conditions and expected changes in those conditions. Strategies are specific, quantifiable steps towards the realization of those goals. Table 1.2 identifies the goal categories for the 2040 Comanche County LRTP.

Goals were developed from meetings held with stakeholders, technical committee and policy board meetings. It is important to recognize that many factors influence transportation system performance and transportation is only one component of a community. Economic development, housing, the economy and natural resources also can play a role. Implementing goals is the responsibility of local, county and state governments and SORTPO. Strategies were developed in coordination with partner agencies. The strategies developed do not fall solely under the responsibility of SORTPO. Local and community agencies should consider their roles in affecting outcomes. It will be necessary to prioritize the strategies and build the data collection and analysis, for those deemed most important, into annual programs, such as the Planning Work Program (PWP).

Table 1.2: Comanche County Goal Categories

Goal	Description
1. Accessibility and Mobility	Improve accessibility and mobility for people and freight.

(pg. 7)	
2. Awareness, Education and Cooperative Process (pg. 7)	Maintain intergovernmental cooperation and coordination, along with community participation and input in all stages of the transportation planning process.
3. Freight \& Economic Vitality (pg. 8)	Support and improve the economic vitality of the county and region by providing access to economic development opportunities, such as business and industrial access, natural, scenic and historic resources or recreational travel and tourism.
4. Environment (pg. 8)	Reduce impacts to the county's natural environment, historic areas and underrepresented communities resulting from transportation programs and projects.
5. Finance \& Funding (pg. 9)	Seek and acquire a variety of transportation funding sources to meet the many diverse system needs.
6. Maintenance and Preservation (pg. 9)	Preserve the existing transportation network and promote efficient system management to promote access and mobility for both people and freight.
7. Safety \& Security (pg. 9)	Improve the safety and security of the transportation system by implementing transportation improvement that reduce fatalities and serious injuries as well as enabling effective emergency management operations.
8. Community \& Health (pg. 10)	Facilitate development of transportation projects and programs that support economic development and healthy lifestyles in the county and region.
9. Tourism \& Travel (pg. 10)	Improve travel opportunities through enhancement and preservation of access to tourism destinations or regionally significant facilities.

Goal 1: Accessibility and Mobility

Improve accessibility and mobility for people and freight.

Strategies:

1. Support opportunities to expand the transit system(s) in the county improving access to health care facilities, education facilities, recreation centers, cultural and tourist sites and employment.
2. Develop a system to collect and monitor changes in population, employment, and major employers by Traffic Analysis Zone (TAZ).
3. Conduct a freight assessment and study for the region.
4. Review transportation improvements and expansion of services to ensure that the facility for one (1) mode of transportation doesn't create barriers for the access or mobility of other modes.
5. Participate with ODOT, Class III Rail Companies and communities in activities that will upgrade rail tracks, bridges and trusses to support the standardized railcar weight of 286,000 pounds.
6. Participate with state agencies, such as the Oklahoma Department of Transportation, Department of Commerce, Metropolitan Planning Organizations (MPO), Regional Transportation Planning Organizations (RTPO), Regional Economic Development Agencies, rail industry and shippers of rail products to discuss and comment current rail issues affect the counties, regions and State.

Goal 2: Awareness, Education and Cooperative Process
Maintain intergovernmental cooperation and coordination, along with community participation and input in all stages of the transportation planning process.

Strategies:

1. Participate on state, regional, and local committees regarding County transportation issues.
2. Educate key stakeholders, businesses, local leaders and the public on the purpose and function of SORTPO.
3. Annually review the SORTPO Public Participation Plan.
4. Aid in development of a bicycle and pedestrian public awareness and education program.
5. Develop a clearinghouse for regional data sets, such as pavement management systems and geographic information systems to help form sound planning decisions.
6. Facilitate and support the coordination of regional training opportunities.
7. Develop a method to track the implementation of projects and regularly update the public on the status of projects, programs and finances.

Goal 3: Freight \& Economic Vitality

Support and improve the economic vitality of the county and region by providing access to economic development opportunities, such as business and industrial access, natural, scenic and historic resources or recreational travel and tourism.

Strategies:

1. Prioritize transportation projects that serve major employment and activity centers, rail facilities and freight corridors
2. Identify the locations of major employment centers, including existing and proposed developments and identify types of transportation available.
3. Coordinate with local and tribal governments on the placement of regionally significant developments.
4. Maintain local, state and federal support for regional business airport
5. Continue to coordinate transportation planning with adjoining counties, regions and councils of government for transportation needs and improvements beyond those in our region.
6. Working with area employers and stakeholders develop a database and map identifying transportation needs.
7. Identify and designate routes and connectors with heavy freight movements as freight priority corridors.

Goal 4: Environment

Reduce impacts to the county's natural environment, historic areas and underrepresented communities resulting from transportation programs and projects.

Strategies:

1. Consult with local, state and national agencies in the areas of environmental protection and historic preservation, in terms of transportation programs and projects.
2. Promote proper environmental stewardship and mitigation practices to restore and maintain environmental resources that may be impacted by transportation projects.
3. Promote the use of alternative fuels and technologies in motor vehicles, fleet and transit vehicles.
4. Develop database and mapping to identify the County's underrepresented communities.
5. Support designs of the transportation system that will protect cultural, historic, and scenic resources, community cohesiveness, and quality of life.
6. Develop a data file and create a map identifying location of wind farms and pipelines and relationship to communities and the transportation system.

Goal 5: Finance and Funding

Seek and acquire a variety of transportation funding sources to meet the many diverse system needs.

Strategies:

1. Maximize local leverage of state and federal transportation funding opportunities.
2. Increase private sector participation in funding transportation infrastructure and services.
3. Encourage multi-year capital improvement planning by local, county, tribal, and state officials that includes public participation, private sector involvement, coordination among jurisdictions and modes and fiscal constraint.
4. Assist jurisdictions in identifying funding sources and applying for funds.

Goal 6: Maintenance and Preservation

Preserve the existing transportation network and promote system management to promote access and mobility for both people and freight.

Strategies:

1. Identify sources of transportation data and develop a procedure to collect the data and present to the public.
2. Identify and collect transportation performance data and compare to previous years'

data.

Goal 7: Safety and Security

Improve the safety and security of the transportation system by implementing transportation improvement that reduce fatalities and serious injuries as well as enabling effective emergency management operations.

Strategies:

1. Coordinate with local governments and other agencies to identify safety concerns and conditions and recommend projects to address key deficiencies.
2. Coordinate county and regional actions with the Statewide Highway Safety Plan.
3. Collect and routinely analyze safety and security data by mode and severity to identify changes and trends.
4. Assist in the designation of corridors and development of procedures to provide for safe movement of hazardous materials.
5. Adopt best practices to provide and improve facilities for safe walking and bicycling.
6. Incorporate emergency service agencies in the transportation planning and implementation process.
7. Support the Oklahoma Department of Transportation in its plans to add and improve roadway shoulders on two lane highways.
8. Reduce the number of at grade rail highway crossings.
9. Upgrade passively protected at grade rail highway crossings.

Goal 8: Community \& Health

Facilitate development of transportation projects and programs that support active lifestyles in the region.

Strategies:

1. Integrate healthy community design strategies and promote active transportation to improve the public health outcomes.
2. Support development of transportation systems that provide opportunities for populations walking, bicycling and utilizing non-motorized modes.
3. Identify funding opportunities and partners to increase low cost transportation opportunities.
4. Establish partnerships with local groups and agencies to provide transportation services.

Goal 9: Tourism \& Travel

Improve travel opportunities through enhancement and preservation of access to tourism destinations or regionally significant facilities.

Strategies:

1. Develop a regional map that identifies tourism destinations and regionally significant facilities.
2. Support development of tourism and marketing program focusing on the attractions in Comanche County including: Meers, Medicine Park, lakes and the Wildlife Refuge.
3. Establish procedures to increase coordination and communication with local governments, tribal governments and state agencies to identify projects that impact the communities' transportation system.
4. Collaborate with local economic development authorities, State and Federal economic development agencies in the identification of current and future transportation projects.

Key Issues, Challenges and Trends

There are many issues facing the area that have a direct or indirect impact on the transportation system. Rural communities have problematic transportation issues such as intersections, congestion and limited or no access to transit. This section is intended to identify these issues, challenges and trends. At the onset of the transportation planning process, the SORTPO staff, policy board and technical committee members identified key issues, trends and challenges that impact the transportation system. Key issues, challenges and trends were also identified through public surveys, stakeholder meetings, public comments, other plans, data sources, and reports.

Key Issues:

- Maintain access to healthcare and emergency services.
- Lack of shoulders on 2 lane highways.
- Lack of funding to adequately maintain roadway systems and bridges.
- Access to active living.
- Obesity, Mental Health, Poverty (Community Health Improvement Plan).
- Federal downsizing.
- Problematic traffic issue locations (areas with high accidents, intersections, truck traffic generators).

Challenges:

- Competition for medical professionals between urban and rural.
- Age of infrastructure.
- Attracting workforce to support the employment needs.
- Access to affordable high-speed internet.
- Competition for industry/business.
- Working together regionally to attract/maintain workforce, industry and community
- Funding limitation - revenues continue to be limited to meet the transportation system needs over time.
- Maintain access to healthcare and emergency services.
- Lack a system to reevaluate how, when and where new roads are built versus investment in upgrade to the existing road system.

Trends:

- Population is declining in the rural areas.
- Freight truck traffic will increase.
- Motor vehicles will continue to be the primary means of transportation.
- Telecommuting will continue to increase as alternatives to onsite workforce.
- The energy sector and farming community will continue to rely heavily on trucks in rural areas.
- Technology impact on retail, employment and how medical services are obtained.
- Autonomous vehicle technology.
- National Household Travel Survey data reveals greater number of people are working from home.
- Rural population shrinking due long term outmigration of young adults, fewer births, increased mortality among working age adults and aging population.
- Increased mortality among working-age adults is recent trend contributing to lower population growth. Rising rates of prescription abuse, opioids and heroin overdose deaths contribute to this trend.

Chapter 2: Current Conditions

This chapter provides a "snapshot" of current conditions that relate to transportation in Comanche County. Demographics, economic conditions, environmental factors, community development and transportation and traffic data are included in this chapter. Comanche County is in southwest Oklahoma (Map 1.1) The largest city is Lawton which is also designated as a MPO. The county is adjacent to Caddo County (north) and Jackson County (west), Stephens County (east) and Cotton County (south). Comanche County's estimated population is 123,066 (2013-2017 ACS), density is 115 people per square mile. Comanche County's economy is largely based in the government, healthcare, education, manufacturing and agriculture.

History

Comanche County is located in southwest Oklahoma Located in southwestern Oklahoma, Comanche County is bordered on the north by Kiowa and Caddo counties, on the east by Grady and Stephens counties, on the south by Cotton and Tillman counties, and on the west by Tillman and Kiowa counties and the land was former Comanche, Kiowa and Apache reservation lands in Indian Territory. Fort Sill was established in 1869 by Major General Philip Sheridan who led a campaign in Indian Territory to halt stop raids into Texas. In 1907 parts of the county were taken to create Tillman County and to add to the areas of Grady, Jefferson, and Stephens counties.

Major highways in the County include: Interstate I-44 (H.E. Bailey Turnpike), US 62, 277, State Highways 7, 19, 65.

- I-44 (H. E. Bailey Turnpike begins at US 70 six miles north of the Texas state line. The turnpike continues northeast and temporarily ends at the US 277 and US 281 interchange and begins again at mile marker $x x x$ and continues northeast intersecting with highways in Chickasha continuing through Oklahoma City into Tulsa. I-44 is designated as an alternative fuel corridor with special signage indicating nearest alternative fueling station.
- US 62 connects the towns of Altus (Jackson County) to the west a Strategic Highway Network connector (STRAHNET), Anadarko (Caddo County) to the north through Chickasha (Grady County).
- SH 7 connects Lawton to the east to US 81 in Stephens County.
- SH 17 begins at US 62 connects the city of Elgin to the town of Sterling and leads to Rush Springs in Grady County.
- SH 36 connects the towns of Chattanooga and Faxon.
- SH 49 enters the county from Kiowa County and extending through the Wichita Wildlife refuge (unsigned) heading east. Exiting the Refuge SH 49 is signed and continues through Medicine Park to I-44 (H. E. Bailey Turnpike).
- SH 58 connects to Carnegie in Caddo County to State Highway 49 near Medicine Park.
- SH 115 begins at US 62 near Cache and extends north 2.92 miles (after entering the Wildlife Refuge the roadway does not carry designation as a state highway. After
leaving the Refuge $1 / 2$ mile south of E155, SH 115 continues north 12.55 extending into Kiowa County.
- US 277 and 281 are parallel the H. E. Bailey Turnpike to Wichita Falls to the south and leads to the north Anadarko and Chickasha.

Public transportation includes the Lawton Area Transit System (LATS) providing public transit locally for Lawton/Fort Sill, Red River Transportation and Kiowa FASTRANS demand response systems. The county has three cities and six town as well as the Fort Sill Fires Brigade Military installation, and the Wichita Mountains Wildlife Refuge. The County seat is Lawton and is the largest city in southwest Oklahoma. Other cities/towns include: Apache, Cache, Chattanooga, Elgin, Fletcher Geronimo, Indiahoma, Meers, Medicine Park and Sterling. The Refuge was established in 1901 totaling 59,020 acres as a natural habitat for native grazing animals like the bison, elk and Texas longhorn cattle.

- Cache is a city located four miles west of Lawton and is included in the Lawton Metropolitan Statistical Area (MSA). Cache has a total area of 3.5 square miles. Population in 2010 was 2,796 and the 2013-17 ACS estimate is 2,902. Historic sites include: Arrastra Site, Boulder Cabin. Buffalo Lodge, Ferguson House, Ingram House, and Quanah Parker Star House. Major employers include: Cache Public Schools, City of Cache, Sonic Drive Inn, Playcare Inc., and Pizza Express.
- The town of Chattanooga is located in far southwestern corner of the County, just east of the county line between Comanche and Tillman counties. This town is located in both Comanche and Tillman counties and is located approximately 22 miles southwest of Lawton The Comanche County portion of Chattanooga is included in the Lawton MSA. The town is on State Highway 36 and. Chattanooga has a total area of .57 square miles. Population in 2010 was 461 and the 2013-17 ACS estimate is 411. Major employers include: Town of Chattanooga, Chattanooga Public Schools, and Hop \& Sack Store.
- Elgin is a city located approximately 17 miles northeast of Lawton, one mile south of Interstate 44 and near the intersection of U.S. Highway 277 and State Highway 17 approximately. The rectangular eastern section of the Fort Sill Military Reservation is directly south of the community. It is included in the Lawton MSA. The city has a total area of 3.72 square miles of land. It is the site of Fort Sill National Cemetery. Population in 2010 was 2,156 and the 2013-17 ACS estimate is 2,950. Major employers include Elgin Public Schools, BAE, Dolese Brothers Co., McDonalds', Bank of Wichita's, Fat Boys Pizza, Sonic Drive-In, Arvest Bank, Williams Discount Food, US Post Office, and Comanche Spur Casino
- The town of Faxon is located approximately 19 miles southwest of Lawton. It is included in the Lawton, MSA. Total area is .3 square miles. Population in 2010 was 136 and the 2013-17 ACS estimate is 76.
- Fletcher is a town located eighteen miles northeast of Lawton. It is included in the Lawton MSA. The town has a total area of 0.8 square miles. Population in 2010 was 1,177 and the 2013-17 ACS estimate is 1,173. Major employers include: Fletcher Public Schools, Georgia Pacific Corporation and the Town of Fletcher.
- Geronimo is located approximately 9 miles south of Lawton at the end of SH 281A and one mile east of Interstate 44. It is included in the Lawton, MSA. Total area of 1.5 square miles is land. Population in 2010 was 1,268 and the 2013-17 ACS
estimate is 1,037. Major employers include Geronimo Public Schools, City of Geronimo, and Byington Janitorial.
- Indiahoma is twenty four miles west of Lawton and is included in the Lawton MSA. Total area is 0.28 square miles. Historic site: First State Bank of Indiahoma. Population in 2010 was 344 and the 2013-17 ACS estimate is 346. Major employers include: Indiahoma Public Schools, US Fish and Wildlife, and Town of Indiahoma.
- Lawton (county seat) lies approximately in the center of the county. The City encompasses a portion of the Fort Sill Military Reservation. Multipole highways, including I-44, US 62 and SH 7 traverse the City. Lawton is eighty-seven miles southwest of Oklahoma City. Throughout its history the town has largely based its economy on the presence of Fort Sill. Lawton is home to Cameroun University and Great Plains Technology Center, and the Museum of the Great Plans. Historic sites: Federal Building and United States Courthouse (NR 00000243), Matty Beal (NR 7500156), Sunset Vogue Blue Ribbon Apartment Historic District (NR 100003236), Lawton High School (NR 97000197), Gore Pit District (NR 80004520) Carnegie Library (NR 76001560), the First Christian Church (NR 85000566, the First Presbyterian Church of Lawton (NR 79001990), Building 309, Fort Sill Indian School, he Methodist Episcopal Church, South (NR 85000567), and the MahoneyClark House (NR 82001494). Fort Sill significant historic sites include: Balloon Hanger at Henry Post Army Airfield, Blockhouse on Signal Mountain, Camp Comanche Site, Chiefs Knoll, Comanche Indian Mission Cemetery, Fort Sill General Officers Quarters, Indian Cemeteries, Medicine Bluffs, Old Tower Two, Post Air Field, and Carnegie Library. Population in 2010 was 96,867and the 2013-17 ACS estimate is 95,168 . Major employers include: Fort Sill, Cameron University, Lawton Public Schools, Comanche County Memorial Hospital, Great Plains Technology Center, Walmart Supercenter, and GEO Correctional Facility.
- Medicine Park is located northwest of Lawton along SH 49, four miles west of I44. The Town is Oklahoma's only historical cobblestone town and lies at the foothills of the Wichita Mountains. Historic sites include: The Medicine Park Hotel and Annex was listed in the National Register of Historic Places in 1979 (NR 79001991). A state fish hatchery was built in 1915. Population in 2010 was 382 and the 2013-17 ACS estimate is 302. Major employers include: Medicine Park Telephone Co., Medicine Park Hall, Town of Medicine Park, Old Plantation Restaurant, and Lawton Water Treatment Plant.
- Meers is a small unincorporated community located on SH 115 at the foothills of the Wichita Mountains. Founded as a gold mining town in 1901. The only remaining structure of the original town is the Meers Store \& Restaurant. Meers lies on the Meers Fault. The Meers Store was listed on the National Register of Historic Places in 1978 as Meers Mining Camp.
- Sterling is a town located approximately 13 miles east of Lawton at the intersection of SH 17 and SH 65. It is part of the Lawton MSA. The town has a total of 0.8 square miles of area. Population in 2010 was 793 and the 2013-17 ACS estimate is 669. Major employers include: Sterling Public Schools, town of Sterling, and Holt Electric.

Table 2.1 provides population data for the cities, towns and County between 1980-2017. Additional demographic data can be found in Appendices 2.1-2.7. As the population fluctuates, either through economic changes, in or out migration or shifting within the region the needs of the communities including education, health care, social services, employment, and transportation remain relatively stable. Land use and development changes that particularly affect transportation in rural areas include, but are not limited to, loss or gain of a major employer, movement of younger sectors of the population to more urban areas, tribal land development.

Transportation is crucial to keeping older adults independent, healthy and connected to friends, family, recreation, shopping and health services. However, older residents' transportation needs differ based on their health, income, marital status, age, race and whether they live in a city/town or rural county area. The needs of this segment of population will continue to influence the transportation needs and services for this region.

Map 2.1: Comanche County, Oklahoma

Table 2.1: Comanche County Population 1980-2017 ACS Estimate

	$\mathbf{1 9 8 0}$	$\mathbf{1 9 9 0}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 2} \mathbf{2 0 1 6}$ $\mathbf{A C S}$	$\mathbf{2 0 1 3 -}$ $\mathbf{2 0 1 7}$ ACS
Cache	1,661	2,251	2,371	2,796	2,918	2,902
Chattanooga	403	437	432	461	457	411
Elgin	1,003	975	1,210	2,156	2,825	2,950
Faxon	140	127	135	136	79	76
Fletcher	1,074	1,002	1,022	1,177	1,095	1,173
Geronimo	726	990	959	1,268	1,091	1,037
Indiahoma	364	337	374	344	359	346
Lawton-Fort Sill	4470	80,054	92,757	96,867	96,728	95,168
Medicine Park	702	684	577	793	764	669
Sterling			373	382	292	302
	31,476	24,344	14,786	17,718	17,975	18,028
Balance of County	112,456	111,486	114,996	124,098	124,583	123,066
Comanche County						

Source: American Fact Finder, US Census
Data obtained from the 2013-2017 ACS further reveals:
\checkmark Population was distributed between male (51.8\%) and female (48.2\%),
\checkmark Median age of years of age - 32.6
\checkmark One Race:112,125

- White-63.4\%,
- African American - 17.2\%,
- American Indian - 5.5 \%,
- Asian - 2.4% and
- Hispanic/Latino - 12.7\%,
\checkmark Mean travel time to work - 16.7 minutes
\checkmark Vehicles Available Workers 16 years and over - 51,128
- No vehicles available - 2.9\%
- One vehicle available - 23.7 \%
- Two vehicles available - 42.9\%
- Three or more vehicles available - 30.6\%
- Total Housing Units - 51,669
- Occupied Housing units - 42,957
- Owner Occupied Units - 23,051
- Renter Occupied Units - 19,906
- 1 unit, detached - 71.3\%
- 1 unit, attached - 2.9\%
- 2 units - 3.3\%
- 3 or 4 units - 2.7\%
- 5 to 9 apartments -6.9%
- 10 to 19 units -3.6%
- 20 or more units -4.1%
- Mobile Home or Other type of Home - 5.2 \%
\checkmark Educational Attainment population 25 years and Older - 77,391
- Less than $9^{\text {th }}$ grade $-1,972$
- $9^{\text {th }}$ to $12^{\text {th }}$ grade, no diploma $-5,830$
- High School Graduate - 25,328
- Some College, no degree - 21,754
- Associates degree - 5,593
- Bachelor's Degree - 10,578
- Graduate or professional degree - 6,336
\checkmark Commute Patterns to Work Age 16 years and Older - 56,360
- Car, truck or van (drove alone) - 72.2\%
- Carpooled - 12.7\%
- Public Transportation - 0.8\%
- Walked - 2.6\%
- Other Means - 1.6\%
- Bicycle - 0.2\%
- Taxicab, motorcycle or other - 1.4\%
- Worked at Home - 10.2\%
\checkmark Civilian Employed population 16 years and over - 49,415
- Agriculture, forestry, fishing/hunting and mining - 871
- Construction-3,059
- Manufacturing - 4,385
- Retail Trade - 6,169
- Transportation and warehousing and utilities - 1,932
- Finance and insurance and real estate - 2,563
- Professional, scientific and management and administrative - 3,988
- Educational service and health care and social assistance - 11,638
- Arts, entertainment, recreation, accommodations and food services -5,194
- Other services, except public administration - 2,816
- Information-897
- Public Administration - 5,324

Figure 2.1 illustrates the civilian labor force between 1990-2017. The information portrayed in this graph developed by the Federal Reserve Bank illustrates a 25 -year picture of the fluctuation in the Comanche County Civilian Labor Force. Figure 2.2 contains occupation and industry information for the County.

Figure 2.1: Comanche County, Civilian Labor Force 1990-2018 (November)

[^0]Figure 2.2: Comanche County Business Patterns, 2010 and 2016

Source: American Fact Finder, Business Patterns
Figure 2.3 provides information related to vehicle registration data obtained from the Oklahoma Tax Commission (OTC). Automobile registration in Comanche County between 2012-2018 increased from 81,261 to 82,24 , an increase of 980 automobiles. Vehicle registration overall shows a decline in commercial truck, commercial truck and tractor, farm truck and motorcycle registrations. The data in the graph confirms that the primary vehicle is the automobile.

Figure 2.3: Comanche County Motor Vehicle Registration, 2012-2018

Source: Oklahoma Tax Commission

Traffic Analysis Zones

The Traffic Analysis Zone (TAZ) Program is a specialized computer program used for delineating zones in support of the Census Transportation Planning Products (CTPP). TAZ delineation follows the decennial census and is designed to allow planning agencies the ability to define areas to associate demographic data that supports transportation system analysis. Boundaries of a TAZ typically follow U.S. Census boundaries and are an aggregation of several census blocks. Socio economic data for the plan was obtained by the 2010 U.S. Census Bureau and Oklahoma Department of Commerce. The year 2015 is the base year for the plan and 2012-2016 ACS population estimate is the base population.

TAZ delineation for the areas other than MPOs are the responsibility of ODOT. Historically in non-MPO areas the TAZ boundary defaulted to the census tract boundary. The RTPO's are responsible for developing these zones and supporting data. As rural transportation planning continues to mature the delineation of TAZ will allow acquisition of data that supports the transportation planning process. The Lawton Metropolitan Planning

Organization (LMPO) developed TAZ maps and data for the City of Lawton and the urbanized area abutting the city. SORTPO developed TAZ maps and data for the remaining areas of Comanche County. SORTPO staff developed TAZ boundaries based on county population as identified below:
> Small populated counties (population $<6,000$)

- population thresholds of $\underline{200}$ to 400 and employment thresholds of 200-300
> Medium populated counties (population 6,001-34,999)
- population thresholds of 400 to 600 and employment thresholds of $\underline{300-400}$
$>$ Large populated counties (population $>35,000$)
- population thresholds of $\underline{600}$ to 800 and employment thresholds of $\underline{400-500}$

Geographically, the Comanche County (excluding the LMPO study area) is subdivided into fifty four (54) TAZs and the socio-economic data (including population and employment) are summarized for each TAZ. Map 2.2 illustrates TAZ boundaries for the county. Maps 2.3 through 2.10 illustrate TAZ areas for the county, cities and towns. The 2012-2016 ACS population estimate of 53,955 and civilian employment of twenty four thousand and eighty six $(24,086)$ were distributed into the TAZs. Appendix 2.8 provides information on the population and employment data by TAZ. The TAZ within and surrounding the cities/towns of Lawton, Elgin, and Cache contain the largest concentration of population and employment. The more rural areas of the County require the Plan development to consider that a major employer is determined by the individual community. In some instances, a major employer may be identified as an employer with as few as 1-4 employees. Major employers by city/town and County by TAZ are included in Appendix 2.9.

Map 2.2: Comanche County Traffic Analysis Zones

Source: Prepared by Landlocked GIS for SORTPO

Map 2.3: Cache Traffic Analysis Zones

Source: Prepared by Landlocked GIS for SORTPO

Map 2.4: Elgin Traffic Analyses Zones

Source: Prepared by Landlocked GIS for SORTPO

Source: Prepared by Landlocked GIS for SORTPO

Map 2.6: Geronimo Traffic Analysis Zones

Source: Prepared by Landlocked GIS for SORTPO

Map 2:7: Sterling Traffic Analysis Zones

Source: Prepared by Landlocked GIS for SORTPO

Physical Development Constraints and Conditions

There are transportation facilities, land ownership, existing development and environmental features that affect the growth of Comanche County. These constraints both physical and manmade have shaped and impacted the development of the county. Comanche County major constraints for development include military installation, wildlife refuge, highways and interstates, rail lines Union Pacific (UP), Stillwater Central (SLWC), lakes, creeks, cities and towns, large land ownership, and tribal land. Map 2.11 illustrates land under tribal jurisdiction.

Map 2.11: Tribal Jurisdictions in Oklahoma

Historic, Natural or Man Made Significant Features

Comanche County is home to environmental features natural and cultural resources which can influence the transportation system. The environmental features and constraints were identified using secondary source information from the following: United States Environmental Protection Agency (USEPA), Oklahoma Geological Survey, Oklahoma Department of Fish and Wildlife Resources, Oklahoma Department for Environmental Quality (ODEQ), United States Department of Agriculture (USDA), United States Department of the Interior Fish and Wildlife Service (USFWS), United States Geological Survey (USGS), Oklahoma University Geographic Information System (GIS) and other state
and local agencies. There are many different types of environmentally sensitive areas and potential impacts to the natural and human environment that may be affected by various actions associated with the plan. These include (but are not necessarily limited to:

- Threatened and Endangered Species
- Wetlands
- Floodplains
- Surface and Ground Waters
- Stormwater Management and Erosion and Sediment Control
- Hazardous Materials
- Air Quality
- Historical/Cultural Resources
- Right-of-Way/Property Impacts, Including Impacts to Parks, Farmland and Neighborhoods
- Scenic View sheds
- Traffic and Train Noise

State and federal environmental regulations, require that environmental considerations be addressed in transportation decision making, plans and programs. Most transportation capital and maintenance projects have the potential to affect natural and human-made resources in both positive and negative ways. Appendix 2.10 summarizes environmental concerns Appendix 2.11 provides description of significant environmental features to be considered in development of residential, commercial/industrial or transportation projects.

Public Safety Issues

The vulnerability of a region's transportation system and its use in emergency evacuations are issues receiving new attention with the threat of intentional damage or destruction caused by terrorist events and natural disasters. Therefore, security goes beyond safety and includes the planning to prevent, manage or respond to threats toward a region and its transportation system and users. There are many programs to help manage security concerns and emergency issues. SORTPO and its member jurisdiction transportation and emergency service staff are regular participants in security planning and preparation activities include development of the Comanche County Hazard Mitigation Plan. Ongoing participation in these planning activities helps prepare for and to better manage transportation safety and security situations.

MAP-21 required all states to prepare and annually evaluate their Strategic Highway Safety Plan (SHSP). A SHSP is a statewide, coordinated safety plan which includes goals, objectives and emphasis areas for reducing highway fatalities and serious injuries on all public roads. More information on the Oklahoma SHSP can be found State of Oklahoma Highway Safety Office's website (http://ohso.ok.gov/strategic-planning-results).

The safety of the traveling public, regardless of vehicle type or highway system classification, is of principal concern for ODOT and SORTPO. Safety strategies are developed based on an analysis of key contributing factors such as crash data, highway inventories, traffic volumes, and highway configurations such as geometric challenges.

When undesirable patterns become evident, specific countermeasures are identified based on a more in depth and detailed analysis of crash locations and causes.

Collisions

To help identify safety issues, traffic safety data must be analyzed. Trend analysis based upon multiple-years' worth of data provides a more accurate indication of the safety condition in the county. An analysis of collision records collected and maintained by ODOT was performed for the calendar years 2012-2016. Between 2012-2017 there were 14,723 collisions with eighty-five (85) fatalities occurring on
 the highways and roadways in Comanche County. The highest concentration of collisions outside of the City of Lawton occurred on I-44, US 277, US 62, and SH 49. County road collisions totaled 740 and highway collisions totaled 2,840. Tables 2.2, 2.3 and 2.4 provides information on total collisions, collisions by road type and collisions by concentration and severity. Rear end collisions represented 30% of collisions during this period, followed by collisions with a fixed object (16.8%), angle turning (14.6\%) and right angle (14.1\%). Map 2.12 illustrates the location of collisions between 2012-2017. Appendices 2.12 and 2.13 provide supplemental information on collision data.

Table 2.2: Comanche County Collision Total, 2012-2017

	FAT	INCAP INJ	NON INCAP INJ	POSSIBLE INJURY	PROPERTY DAMAGE	TOTAL
Collisions	85	297	1,131	2,677	10,533	$\mathbf{1 4 , 7 2 3}$
Persons	88	373	1,503	4,000		$\mathbf{5 , 9 6 4}$

Source: ODOT Traffic Engineering Div. Collision Analysis and Safety Branch

Table 2.3: Comanche County Collisions by Road Type, 2012-2017

	HIGHWAY COLLISIONS				CITY STREET COLLISIONS				COUNTY ROAD COLLISIONS				TOTAL COLLISIONS			
	Fat	Inj *	PD	Tot	Fat	Inj *	PD	Tot	Fat	Inj *	PD	Tot	Fat	Inj *	PD	Tot
2012	3	170	341	514	7	561	1722	2290	3	72	84	159	13	803	2147	2963
2013	1	150	352	512	2	525	1508	2035	3	56	77	136	15	731	1937	2683
2014	5	156	282	444	3	517	1451	1971	6	50	70	126	15	723	1803	2451
2015	9	136	353	498	2	493	1389	1884	1	39	73	113	12	668	1815	2495
2016	7	143	279	429	5	430	1119	1554	2	33	62	97	14	606	1460	2080
$\begin{aligned} & 2017 \\ & \text { (part) } \end{aligned}$	8	141	304	453	3	395	1001	1399	5	38	66	109	16	574	1371	1961
Total	43	896	1,911	2,850	22	2,921	8,190	11,133	20	288	432	740	85	4,105	10,533	14,723

Source: ODOT Traffic Engineering Div. Collision Analysis and Safety Branch

* INCLUDES INCAPACITATING, NON-INCAPACITATING, AND POSSIBLE INJURIES

Table 2.4: Comanche County Collision Concentration, 2012-2017

CITY	HWY	INT- REL/TERM- LOC	CITY STREET NAME	CITY STREET NAME	HWY	MILE MARKER /ST.2	SEVERITY INDEX	NUM. COLLISIONS	RANK
0	US-62	INTER	-	MEERS PORTER HILL	US- 277	4.38	60	27	29
0	SH-49	-	-	I-44	I-44	7.17	38	27	69
ELGIN	US- 277	-	8 ST.	H.E. BAILEY	I-44	4.71	35	22	75
0	SH-17	INTER	-	TRAIL/KLEEMAN	-	1.6	24	11	123
0	I-44	-	-	-	-	11.84	22	11	138
0	I-44	-	-	-	-	11.64	21	17	139
0	US-62	INTER	-	INDIAHOMA	-	4	21	5	145
0	SH-7	INTER		TRAK/TRAIL	-	6.45	20	8	157

2040 Comanche County Long Range Transportation Plan

CITY	HWY	INT- REL/TERM- LOC	CITY STREET NAME	CITY STREET NAME	HWY	MILE MARKER /ST. 2	SEVERITY INDEX	NUM. COLLISIONS	RANK
ELGIN	$\begin{aligned} & \text { US- } \\ & 277 \end{aligned}$	TERM LOC	8 ST.	H.E. BAILEY	I-44	4.71	18	17	166
		RIT							
0	I-44	-	H. E. BAILEY TPK	-	-	0.76	18	9	175
0	US-62	-		I-44	I-44	0.61	17	11	183
ELGIN	$\begin{aligned} & \hline \text { US- } \\ & 277 \end{aligned}$	INTER	8 ST.		SH-17	5.29	15	10	210
0	SH-7	INTER	-	150 ST.	SH-65	9.43	15	9	212
0	SH-36	INTER	-	67 ST.-N.	-	12.7	12	6	263
0	-	-	-	-	-	427	12	3	268

Source: ODOT Traffic Engineering Div. Collision Analysis and Safety Branch

Map 2.12: Comanche County 2012-2017 Collision Map

Existing Road Network

The state-owned highway system in Oklahoma is comprised of the State numbered route highways, the US numbered route highways and the Interstate Highway System. The state system of highways encompasses 12,254 centerline miles as measured in one direction along the dividing stripe of two lane facilities and in one direction along the general median of multilane facilities. Transportation on our highways is also facilitated by over 6,800 bridge structures that span major rivers and lakes, named and unnamed perennial streams and creeks, other roads and highways and railroads.

Oklahoma's rural nature and historically agricultural and energy-based economy has witnessed the conversion of many farm-to-market roads and bridges into highways. While these roads were ideal for transporting livestock and crops to market 70 years ago, they are less than adequate when supporting today's heavier trucks, increased traffic demands and higher operating speeds. Almost 4,390 miles of Oklahoma highways are two-lane facilities without paved shoulders. Appendix 2.14 illustrates the location of two lane highways with no shoulders. Appendix 2.15 illustrates the Steep Hill/Sharp Curves areas of concern (statewide).

Preserving the transportation system has emerged as a national, state and local transportation priority. Aging infrastructure continues to deteriorate, reducing the quality of the system and increasing maintenance costs. All roads deteriorate over time due to environmental conditions and the volume and type of traffic using the roadway. Without proper maintenance, roadways wear out prematurely. ODOT's annual evaluation of pavement conditions and safety features such as passing opportunities, adequate sight distances, existence of paved shoulders, recovery areas for errant vehicles, and the severity of hills and curves in 2018 reveals about 30% or approximately 3,646 of the State's 12,254 miles of highway rate as poor which includes 3,126 miles of two-lane highway.

Traffic Count

ODOT collects traffic count data on the highways and roads functional classified above a local street or road. Other governmental entities may also be a source of additional traffic counts. Appendix 2.16 illustrates the 2018 Annual Average Traffic Count Data collected by ODOT.

Functional Classification and Road Systems

Functional classification is the grouping of roads, streets and highways into integrated systems ranked by their importance to the general welfare, motorist and land use structure. It is used to define the role that any road should play in providing mobility for through movements and access adjoining land. This grouping acknowledges that roads have different levels of importance and provides a basis for comparing roads fairly.

Historically, one of the most important uses of functional classification of streets has been to identify streets and roads that are eligible for federal funds. The original federal aid primary, federal aid secondary, federal aid urban and national interstate systems all relied on functional classification to select eligible routes. In 1991, the Intermodal Surface Transportation Efficiency Act (ISTEA) eliminated the primary, secondary and urban federal aid systems and created the National Highway System (NHS). ISTEA continued the
requirement that a street, road or highway had to be classified higher than a "local" in urban areas and higher than a "local" and "minor collector" in rural areas before federal funds could be spent on it. The selection of routes eligible for NHS funding was also based on functional criteria. While eligibility for federal funding continues to be an important use for functional classification, it has also become an effective management tool in other areas of transportation planning.

Streets are grouped into functional classes according to the character of service they are intended to provide. Oklahoma's Functional Classification system undergoes a comprehensive review after each decennial U.S. Census. The functional classification of streets includes the following functional classes: Interstate, Freeway, Rural Principal Arterial, Rural Minor Arterial, Rural Major Collector and Rural Minor Collector. Appendix 2.17 provides additional information on this topic. Appendix 2.18 illustrates Comanche County Functional Classification system.

Bridges

Federal law requires that all bridges be inspected biennially; those that have specific structural problems may require more frequent inspections. Inspections include evaluation and rating of numerous elements of the substructure, superstructure, and deck, with special attention paid to fracture-critical members. Underwater inspections occur no less than every 5 years to check for scour around bridge piers. Bridges are composed of three basic parts: deck, superstructure and substructure. If any of these components receives a condition index value of 4 or less in the National Bridge
 Index, it is considered structurally deficient.

Bridges are rated on a numerical scale of " 1 " to " 7 " that translates into a range of Poor, Fair, Good, and Excellent. Bridges are also described as "Structurally Deficient" and "Functionally Obsolete" as illustrated in Appendix 2.19. The former may have any of many structural problems noted in the inspection; while some may be closed or load-posted, many remain safe for traffic. The latter are bridges that do not meet current design standards. They may have narrow lanes, or inadequate clearances, but they may also be structurally sound. These structures enable vehicles, bicycles, pedestrian and wildlife to cross an obstacle. Bridges are structures that span more than 20 feet between supports and deteriorate over time due to weather and normal wear-and-tear with the passage of vehicles. To ensure safety and minimize disruption to the transportation network bridges undergo regular inspections by qualified engineers. Inspections help locate and identify potential problems early and trigger protection mechanisms when a problem is found.

Comanche County bridge inventory includes one hundred sixty nine (169) On System and three hundred seventy seven (377) Off System Bridges that are critical to regional mobility. The bridges in the County vary greatly in their age with the oldest constructed in 1906 and most recent construction occurred in 2018. Between 2010-2018 thirty (30) bridges have been replaced or constructed. County bridges (off system) with a sufficiency rating of 60 to

79 total seventy one (71) and bridges with a sufficiency rating of 59 or less total twenty four (24). Appendices 2.20 and Appendices 2.21 includes the On and Off-System bridges for Comanche County.

Traffic Control

Traffic signals are a key element of traffic control. Their location and timing affect the mobility of vehicles and pedestrians. National studies demonstrate that poorly timed traffic signals are responsible for a significant proportion of urban traffic congestion. Signal timing that does not allow sufficient time for pedestrians to cross a street can contribute to safety problems and act as a barrier to walking. The Manual on Uniform Traffic Control Devices (MUTCD) establishes minimum warrants that are to be met for installation of a signal, and for designation of exclusive turn lanes and movements. Signal ownership is an important element, as each jurisdiction may have its own protocols for maintaining and retiming signals. There is currently no inventory of traffic control devices in Comanche County which if developed can assist in prioritization of maintenance and scheduling upgrade.

Freight System

The FAST Act repealed both the Primary Freight Network and National Freight Network and directed the FHWA Administrator to establish a National Highway Freight Network (NHFN), additional information on the NHFN can be found in Appendix 2.22. The FAST Act includes the Interstate System-including Interstate facilities not located on the Primary Highway Freight System (PHFS) in the NHFN. All Interstate System roadways may not yet be reflected on the national and state NHFN as shown on Map 2.13. The SORTPO Policy Board identified corridors listed in Table 2.5 and illustrated in Map 2.14 as significant statewide and regional highway freight corridors. Figure 2.5 illustrates the 2011 average daily long-haul truck volume and map 2.15 illustrates the
 Oklahoma 2015 High Volume Truck Corridors.

Table 2.5: Comanche County Significant Freight Corridors

LOCATION	DESCRIPTION
SH 17	US 62 east to County Line
North of Sterling	
I-44	
SH 7	
SW 82nd St. (Lee Blvd. to SH 36)	
SH 36	Lee Blvd/97th north to Old Cache Rd., west to Deyo Mission Rd and north to US 62
US 62	
West Lawton Industrial Park area	

Source: SORTPO

Map 2.13: National Highway Freight Network

Map 2.14: Regionally Significant Freight Routes

Figure 2.5 Average Daily Long-Haul Traffic on NHS 2011

Map 2.15: Oklahoma High Volume Truck Corridors

Source: SWODA GIS

To assist with the inspection and enforcement of truck permits Ports of Entry (POE) facilities were constructed by ODOT. This system of POE monitors freight ingress at the state line and allows better enforcement of vehicle and freight laws. The POE (Map 2.16) are state-of-the-art facilities established as the mechanism to create a more controlled freight transportation environment on the highway system.

Map 2.16: Port of Entry

Railroads

ODOT Rail Programs Division oversees and monitors five different railroad companies operating through leases on approximately 212 miles of State owned track and serves as a liaison between ODOT and rail companies for ODOT projects which involve railroads or railroad property. In August 2014, ODOT and the Stillwater Central Railroad completed a sale of the Sooner Sub rail line between Midwest City and Sapulpa.

After this sale ODOT began a $\$ 100$ million initiative to improve safety at railroad crossings statewide. The state-owned tracks are leased by privately operated railroads. Statewide
there are three (3) Class I railroads and nineteen (19) Class III railroads. Class I railroad lines include Burlington Northern Santa Fe Railway (BNSF), Union Pacific Railroad (UP), and Kansas City Southern Railway Co. (KCS).

Comanche County is home to UP a Class I railroad line and SLWC a Class III line. The UP line extends north and runs parallel to US 62 from its intersection with the SLWC and continues northeasterly into Caddo County continuing to Chickasha in Grady County where the line connects to the UP continuing north and south. SLWC railroad operates from Snyder through Lawton and Chickasha to Oklahoma City.

Bicycle \& Pedestrian System

Bicycle and pedestrian facilities have been primarily a local issue, usually within communities. Most communities have at least a partial system of sidewalks to aid pedestrians, particularly near schools. Pedestrian travel requires a network of sidewalks without gaps and with accommodations for people with disabilities as defined by the Americans with Disabilities Act (ADA). There are instances, particularly in rural areas, where a wide shoulder is an acceptable substitute for a sidewalk. Safe pedestrian and bicycle travel require protected crossings at busy intersections, marked crosswalks and pedestrian signals where warranted. Located in Comanche County are three primary bicycle and pedestrian routes: City of Lawton, Duty Rowe Fit Kids Fitness Trail in the Wildlife Refuge and SH 115 north of US 62.

One opportunity to develop and implement bicycle and pedestrian facilities is the Transportation Alternative Projections (TAP) and Safe Routes to School (SRTS), administered by ODOT. In FFY 2016, seven TAP projects were awarded in the SORTPO region to the following communities: Apache, Bessie, Duncan, Elk City, Hobart, Lawton, Purcell, and Tuttle. In FFY 2019, the ODOT Transportation awarded TAP projects in the SORTPO region to communities with a population of 5,000 or less to: Comanche, Thomas and Waurika.

Public Transit

Service provided within the SORTPO region is limited to demand response service. This service is provided based on a pre-arrangement or an agreement between a passenger (or group of passengers or an agency representing passengers) and a transportation provider for those needing "curb-tocurb" transportation. The pre-arrangement may be scheduled well in advance or, if available, on short notice and may be for a single trip or for repetitive trips over an extended period (called "subscription service"). Red River has been providing service to communities in Comanche County since 1997. Additional information on this transit
 service can be obtained from the Red River Community Action Corporation and ODOT Transit Division. Kiowa FASTRANS and Comanche Nation also operate a demand response transit system. The Lawton Area Transit System is a fixed route system providing service to the Lawton/Fort Sill community.

Airports

The Oklahoma Airport System Plan classifies airports by their functional classification: Regional Business Airport (RBA), District Airport (DA) and Community Airport (CA). These classifications were developed to characterize each airport on how they relate to each other. The concept of classification of airports is like the concept of classifying the roadway system.

An RBA serves multiple communities. Normally, it will serve:

- a community of at least 5,000 persons, generally larger,
- a county population of 10,000 or more persons,
- serve major employers (businesses with 50 or more employees),
- located near the center of a local sustaining economy, and
- closely match the local sustaining economies identified
 by the Oklahoma Department of Commerce.

Features of a DA include providing access to a part of the state that is not well served by an RBA. Typically, these airports will:

- have a supporter with a defined interest in promoting airport and with a demonstrated financial capability,
- about five or more based aircraft at these airports or an equivalent number of annual itinerant operations, and
- airports are attended, aviation gasoline is available and there is a public terminal building.

The CA airports is entry-level airports. These airports regularly serve

- small communities, where the city population is less than 5,000 , and for many, the population is less than 2,000 ,
- normally these airports are not attended, have no services available, and
- the sponsor has limited financial capability to fund capital improvement projects.

The SORTPO area consists of twenty-two (22) general aviation airports identified in Table 2.6. Comanche County is home to one public airport and is illustrated on Map 2.1.

Table 2.6: SORPTO Public Airports

CITY	COUNTY	AIRPORT NAME	TYPE OF AIRPORT	OWNER
Sayre	Beckham	Sayre Municipal	CA	Municipal
Elk City	Beckham	Elk City Regional	RBA	Municipal
Carnegie	Caddo	Carnegie Municipal	CA	Municipal
Anadarko	Caddo	Anadarko Municipal	DA	Municipal

2040 Comanche County Long Range Transportation Plan

CITY	COUNTY	AIRPORT NAME	TYPE OF AIRPORT	OWNER
Hinton	Caddo	Hinton Municipal	DA	Municipal
Lawton	Comanche	Lawton-Ft. Sill Regional	RBA	Municipal
Walters	Cotton	Walters Municipal	CA	Municipal
Clinton	Custer	Clinton Regional	RBA	Municipal
Weatherford	Custer	Thomas P Stafford	RBA	Municipal
Chickasha	Comanche	Chickasha Municipal	RBA	Municipal
Mangum	Greer	Scott Field	DA	Municipal
Hollis	Harmon	Hollis Municipal	DA	Municipal
Altus	Jackson	Altus/Quartz Mt. Reg.	RBA	Municipal
Hobart	Kiowa	Hobert Regional	RBA	Municipal
Purcell	McClain	Purcell	DA	Municipal
Cheyenne	Roger Mills	Migon Laird Municipal	CA	Municipal
Duncan	Stephens	Halliburton Field	RBA	Municipal
Tipton	Tillman	Tipton Municipal	CA	Municipal
Grandfield	Tillman	Grandfield Municipal	DA	Municipal
Frederick	Tillman	Frederick Regional	RBA	Municipal
Cordell	Washita	Cordell Municipal	CA	Municipal
Burns Flat	Washita	Clinton/Sherman	RBA	Municipal

Source: Oklahoma Aeronautics Commission

Areas of Concern

Areas of concern were identified through surveys, holding public meetings and soliciting comments from stakeholders. Through the collective knowledge and experience of the members of the Transportation Technical Committee and Policy Board and the information obtained via public comment areas of concern were identified and shown in Table 2.7. The scope of the LRTP does not include solutions to the areas of concern.

Table 2.7:Comanche County Transportation Areas of Concern

Location	Comment
Cache	Airport road between Cache Road and Lee Blvd is like a roller coaster that throws your car in a bad direction.
Cache	All of Cache Road in front of Cache Public Schools. It needs a center turning lane really bad!

Location	Comment		
Cache	Any street in Cache city limits and the rural roads that surround Cache. Lee Blvd. and Crater Creek. If you are on Crater Creek turning onto Lee Blvd. you have to pull into the oncoming lane just to see if you can turn onto Lee. This has been an issue for many many years.		
Cache	Cache does not have a dedicated public transportation bus line or cab service.		
Cache	Congestion on old highway 62 during school hours and sporting events. Crosswalks could be better		
Cache	Giant potholes in the roads around Cache		
Cache	Improve the interior roads in cache that are not main roads. I feel as though the non-essential main roads are neglected and cause vehicle damage and are unsafe.		
Cache	SW Copperfield Place in Cache Oklahoma needs to be paved!		
Cache, County	115 I front of Lil Moma's Cafe. Cannot safely see when vehicles park on west side near road		
Cache, County	Hwy 115, rural roads around Cache, Hwy 49		
County	The city of Cache \& surrounding country areas roads are steadily in decline. The only major roads that have been cared for are Hwy 115 Csomewhat), Cache Road in front of Cache High School \& Lee Blvd. Traffic itself is fairly light. The potholes are my greatest area of concern in both the city and outlying county areas in the countryside		
County	Cery dangerous section of road.		
Cache is literally crumbling. It is a very Cache, Lawton, County	Cache road, sometimes Sheridan red. Many county roads. Main roads tore up still, a four road I. Front of house was paved and they tore it out and now dirt. Don't understand. Airport red in cache on side going to baseline needs fixed bad. A lot of county roads		
County		\quad	Sheridan Road Lawton. Crater Creek Cache.
:---			
County			

Location	Comment
County	Old Cache Rd and NW Paint Rd, very poor sight lines, uneven poorly constructed turn lanes.
County	Rogers Lane, Deyo Mission
County	Rough county roads. Lots of potholes
County	Schools, 115
County	The roads which are part of the county are in such bad shape it is making it hazardous to drive from home to highway. On North Drive, the road is so narrow that cars drive in the center of the paved road, with no white lines, which is going to cause a serious accident considering the hills and blind spots.
County	Curves on old Cache Road, people consistently crossing over the double yellow line, because the roadway has lack of space, and no shoulders. Several accidents have occurred on this roadway around the curves and on a daily basis I passed people who crossed the double yellow line.
County, Key Gate, Lawton	Besides downtown Lawton I would say the entrance to Key Gate at Ft. Sill is dangerous. 82nd Street leaving Lawton south needs to be improved very much, (no shoulders). There needs to be a 4 lane bypass on the south side of Lawton. Must small roads in and out of all towns in Comanche County need better shoulders.
County, Lawton	Deyo mission and cache road. All of Lawton. Roads in cache that aren't main roads are in terrible shape.
County, Lawton	Lee Blvd, VERY bumpy from post oak to hey 115, 119 street and Lee to 2nd street AWFUL.
County, Lawton	Old Cache Rd and Deyo Mission Road Lee Blvd and Deyo Mission Road
County, Lawton	Red Elk Rd and Lee Blvd up to Good Year. Road is uneven, road shoulders are caving in. Pothole repairs are not holding up to everyday traffic, and there are no shoulders in the event of an emergency.
County, Lawton	The roads in Lawton are horrible. Rough and bumpy. The roads on Tony Creek Dr north of Watts are riddled with potholes.
County, Lawton	Red Elk Rd and Lee Blvd up to Good Year. Road is uneven, road shoulders are caving in. Pothole repairs are not holding up to everyday traffic, and there are no shoulders in the event of an emergency.
County	West Lee. The road just continues to get worse.
Elgin	intersection at Sonic is very busy
Elgin	Congestion on Main St in Elgin
Elgin	I-44 \& Elgin Ok. Off \& on ramp. I44 Elgin exit for towns north of Elgin

Location	Comment
	(fletcher, Cyril, cement). During am/pm heavy work traffic backs up to ramp coming onto and exiting I-44
Elgin	Need a stop light at US 277. Highway 277 in Elgin between I44 and SH 17 signal needs to be widened to either 4 lanes or provide center turn lane. Cole St. \& Hwy 277. North St. \& Hwy 277
Elgin	Replace timed lights with arrival sensors.

Location	Comment			
Medicine Park	The entire road through Medicine Park from Highway 49. There are many holes and patches and sometimes unsafe for two cars to pass both going in opposite directions. Many of the roads in Medicine Park are in very poor condition.			
Meers/Porter Hill	Meers/porter hill intersection 62 and 277. No shoulder on porter hill road from 62 to 115. Very dangerous.			
SH 17 (Elgin - Sterling)	Extremely narrow bridges, no shoulders, heavy traffic from Dolese Plant east to US 81			
SH 65 (Intersection	no shoulders, heavy truck traffic from Dolese plant and Temple Inland			
SH 17/65				
north to I-44)		\quad		SH 115 north to Meers need bridge and safety improvements
:---	:---			
	Debris on shoulders			
	Mighway from Apache to Anadarko should be 2 lanes each side from the local businesses.			
	More children at play signs. And more caution signs for wild game crossing.			
	Need more exits and turn arounds on I44 between Lawton and Chickasha!			
	Potholes Roads in small towns are hazardous and are too expensive for the			

Source: Stakeholder Meetings, Surveys, SORTPO

Chapter 3: Future Conditions and Improvements

The objective of the Future Conditions and chapter is to portray a "snapshot" of future population and employment growth and transportation improvements. It is assumed that only those transportation projects included in the current ODOT eight (8) year construction plan, County Improvements for Road \& Bridges Program (CIRB) and projects funded by local governments will be constructed by the year 2040.

Future Conditions

Comanche County's population and employment development patterns are concentrated in the cities/towns of Cache, Elgin, Fletcher, Geronimo and Lawton. Growth in the Cache, Elgin and Fletcher areas are driven by their proximity to the City of Lawton and Fires Center of Excellence, Fort Sill. Growth in other parts of the County are highly dependent on industry sections including government, manufacturing, education, healthcare and farming.

Projections for population and employment for Comanche County (excluding the Lawton MPO area) was based on data obtained from the US Census from from 1980-2013-17 ACS, State of the State 2012 Popuation, local development knowledge, location of employment and activity centers and proposed development. These projections were developed based on Countywide data without consideration of the overlapping boundaries of SORTPO and LMPO. Growth was calcuated at approximately 10% per decade between years 2018 and 2035 and a $.1 \%$ annual growth between years 2036 through 2040. Population by 2040 is projected at 137,651 and civilian employment is projected at 54,271 . The portion of the population and employment projections (13,553 poulation and 4,033 employment) outside of the LMPO tions were distributed through Comanche County. The projections were primarily distributed to the areas of Cache, Elgin, Fletcher and Geronimo. Appendix 3.1 provides the Comanche County 2040 projected population and employment by TAZ.

Within Comanche County, there may be areas that experience congestion such as areas near major activity generators such as employment centers, education facilities, and health facilities. Studies to identify specific causes and solutions for these areas will need to be considered on a case by case basis. As population changes the impact on the traffic volume and roadway capacity will need to be re-examined. Future truck freight growth is projected to continue. Development of southwest Oklahoma regional freight plan will provide the region an opportunity to look long term at the needs of the freight industry, interconnecting between regions and identification of future freight projects that will support the growth. Figure 3.1 illustrates the Projected Average Daily Long-Haul Traffic on NHS.

Figure 3.1: Projected Average Daily Long-Haul Traffic on NHS 2040

$\mathbf{2 0 4 0}$ Transportation Funding and Improvements

Not all service needs for the transportation system are for constructed improvements. In many instances, additional data will need to be collected and studies developed to provide a complete list of needs. In the interim projected construction improvement needs, will rely on information, data, programs implemented by state, tribal governments, rail line companies, county and city governments.

Federal

In general, transportation revenues continue to follow an unsustainable trajectory as multiple factors force the funding available for transportation to continue a downward trend. For example, both the Oklahoma and federal gas tax rates are fixed on a per-gallon basis, and therefore gas tax revenues are not responsive to inflation. As the cost of transportation infrastructure projects increases, the amount of revenue generated from the gas tax remains static. It is not possible to maintain past levels of transportation investments as per capita collections continue to decline. Additionally, as cars become more fuel efficient, drivers pay less in gas taxes. At the same time, the wear and tear on roadways caused by these vehicles remains the same. The federal funding levels related to highways are typically established through authorizing legislation commonly referred to as the Federal Highway Bill. This legislation normally authorizes projected funding levels for a period of six years. Consistent, long-term funding anticipations are critical to
 understand the expected annual federal funding availability and prepare projects accordingly. Each year, the legislation is funded through the Administration's budgeting and the congressional appropriations processes. The primary source for the dedicated federal transportation funding appropriation is the gasoline and diesel tax deposits directed to the Highway Trust Fund.

The department of transportation in each state is designated as the cognizant or recipient agency to interact with the representative federal agency, the Federal Highway Administration. Therefore, federal funding for roads and bridges is administered by ODOT regardless of facility ownership. All traditional, congressionally identified or discretionarily funded city street and county road projects that utilize federal highway funding are administered by and through ODOT.

Taxes on gasoline and other motor fuels are collected and distributed from the Federal Highway Trust Fund (HTF) and are distributed to the states by the FHWA and the FTA to each state through a system of formula grants and discretionary allocations. Motor fuels taxes, consisting of the 17 cent per gallon tax on gasoline and 14 cent per gallon tax on diesel fuels, and 5 cents per gasoline gallon equivalent excise tax on natural gas used for motor vehicle the trust fund's main dedicated revenue source. Taxes on the sale of heavy vehicles, truck tires and the use of certain kinds of vehicles bring in smaller amounts of revenue for the trust fund. Surface Transportation Program (STP) is federal funds utilized on road projects. These STP funds may provide up to eighty percent (80%) of the
construction costs of these projects. Counties fund the remaining twenty percent (20\%) match for construction costs, plus the costs for engineering, right of way and utility relocation through local sources or state fund. taxes.

State
The ODOT 8 Year Construction Work Program 2019-2026 assembles projects according to anticipated state and federal fund categories. Regarding federally funded projects, the current plan is fiscally balanced in that the total project costs do not exceed the anticipated federal funds. ODOT policy prohibits start of future projects until all funding is in place and federal regulations dictate projects cannot be programmed in the Statewide Transportation Improvement Program (STIP) unless there is a programmatic and financial game plan for completing the project within six (6) years.

Funding of local transportation projects and programs is heavily influenced by State of Oklahoma's annual budget, and the Highway Trust Fund. Three key components for Oklahoma transportation funding and investment include: House Bill 1078 (Rebuilding Oklahoma Access and Driver Safety), House bill 2248 and House Bill 2249. Transportation funding sources based on motor vehicle fuel taxes tend to fluctuate with changes in fuel prices and fuel consumption. While most taxes are not tied to fuel prices, when gas prices go up, consumption tends to go down and thus tax revenues decline.

Oklahoma's state budget shortfalls since 2010 continues to have a negative impact on the transportation system. In FY 2017 there was a $\$ 367$ million reduction in transportation funding. During FY 2018 \$156.6 million was transferred from the State Transportation fund which led to a reduction and removal of projects under the 8 Year Construction Work Program. Funding ($\$ 50$ million) was also reduced from the county road and bridge improvement fund administered by ODOT.

With this plan development, it is anticipated that there will continue to be a downfall in available revenue for transportation programs and projects. Therefore, the coordination with local, regional and statewide agencies in the development of transportation programs and projects is significant to accomplish the projects. The total expenditures identified in Table 3.1 are within the total federal, state and local revenues estimated for the 2040 LRTP and are adequate to fund the projects listed

County

The main funding program for county roads and bridges is the county highway fund, which consists of revenues from the state taxes on gasoline and diesel fuels as well as motor vehicle registration fees and a portion of the of the state gross production tax on oil and gas in the case of counties that have oil and gas production. A county's apportionment is based on several formulas that use proportional shares of each factor as it relates to the total statewide county totals. Counties that have oil and natural gas production receive a portion of the seven percent (7\%) state tax on natural gas and oil. Counties have authority to impose a countywide sales tax for roads and bridges with revenues earmarked for roads and bridges.

In the summer of 2006 a law created the County Improvements for Roads and Bridges program. The funds apportioned to the program are in equal amounts to the eight Transportation Commission Districts. The sole purpose of the funds is for the construction or reconstruction of county roads or bridges on the county highway system that are the highest priority. Funds may accumulate annual funding for a period of up to five years for a specific project. Information obtained from a report published by the National Association of Counties; funds collected by OTC for transportation projects are distributed directly to the counties. Revenues specifically for the CIRB category are collected from state gasoline and diesel tax, special fuel tax and state gross production tax on oil. The county uses a small percentage of tax revenues for maintenance and minor improvements, relying on outside funding sources for major improvements.

The County Commissioners established Circuit Engineering Districts (CEDs) to provide common engineering and project support services. All potential transportation projects are initiated by the County Commissioners and are coordinated with the appropriate CED who directs the development of the recommended list of projects to be considered by ODOT for inclusion in the CIRB Construction Work Plan. ODOT and the Transportation Commission have the responsibility for the expenditure of the CIRB funding. When the CIRB Construction Work Plan is approved, ODOT coordinates and cooperates with the Counties and the CEDs in management of the project.

Local

The main source of funding for community transportation projects is found in the general operating budgets. Generally, these funds are derived by city sales tax and fees. Funding for rural transportation projects may also be available through federal sources such as Community Development Block Grants (CDBG) through Oklahoma Department of Commerce (ODOC), Economic Development Administration (EDA), and US Department of Agriculture Rural Development (USDA RD) programs. Oklahoma has limited funding available for projects through Rural Economic Action Plan (REAP) administered by the COGs. Planned improvements identified in Table 3.2 are local (city/town/county) projects and were identified through a public survey, public meetings and local expertise.

Table 3.1: Apportionment of Statutory Revenues - Funding Categories

	FY 2015-16	FY 2016-17	FY 2017-18	FY 2018-19
Oklahoma Aeronautics Revolving Fund	$\$ 5,312,204.59$	$\$ \$ 5,156,365.29$	$\$ 5,156,365.29$	$\$ 4,407,900.47$
Circuit Engineering District Revolving Fund	$\$ 3,606,553.45$	$\$ 2,454,282.96$	$\$ 2,573,399.41$	$\$ 3,180,783.29$
Counties for Bridge \& Road Improvement	$\$ 23,430,017.08$	$\$ 15,225,256.66$	$\$ 16,200,387.04$	$\$ 20,382,469.39$
Counties for Roads	$\$ 254,470,157.23$	$\$ 228,861,816.51$	$\$ 233,699,714.86$	$\$ 285,059,414.58$
County Improvement Road and Bridge Revolving Fund	$\$ 138,133,545.79$	$\$ 120,000,000.00$	$\$ 120,000,000.00$	$\$ 120,000.00$
County Road Fund	$\$ 17,701,249.31$	$\$ 17,933.883 .32$	$\$ 17,212,153.19$	$\$ 17,482,856.57$
County Road Improvement Revolving Fund	$\$ 26,138,425.71$	$\$ 25,065,890.98$	$\$ 24,057,140.75$	$\$ 24,435,498.37$
High Priority State Bridge Revolving Fund	$\$ 6,225,331.10$	$\$ 6,393,096.46$	$\$ 6,333,887.30$	$\$ 6,481,220.61$
Public Transit Revolving Fund	$\$ 3,850,000$	$\$ 3,640,000.00$	$\$ 3,829,000.00$	$\$ 3,850,000.00$
Railroad Maintenance Revolving Fund	$\$ 826,792.79$	$\$ 850,452.97$	$\$ 796,860.87$	$\$ 1,016,666,64$
Rebuild Oklahoma Access \& Driver Safety (ROADS) Fund	$\$ 411,800,000.00$	$\$ 441,045,432.00$	$\$ 508,678,655.32$	$\$ 571,669,915.00$
 Maintenance Funds	$\$ 4,785,497.76$	$\$ 4,144,636.34$	$\$ 4,110,742.06$	$\$ 3,985,764.77$
State Transportation Fund	$\$ 214,115,706.14$	$\$ 217,307,803.50$	$\$ 216,795,526.28$	$\$ 155,047,95600$

Source: ODOT, OTC

Table 3.2: Comanche County Future Transportation Projects

CITY/TOWN	LOCATION	DESCRIPTION
Fletcher	Comanche County District\#1, Fletcher Public School, City of Fletcher and Comanche Nation - Reconstruction of Route \#7502 in Fletcher.	

Source: Town of Fletcher and Comanche County Commissioners

Chapter 4: Public Participation

This chapter presents and describes the public participation tools the RTPOs utilize as part of the planning process. Public participation is a federal requirement outlined in MAP21 and The FAST Act. SORTPO has an adopted Public Participation Plans (PPP) that was followed.

Environmental Justice

FHWA has long embraced non-discrimination policy to make sure federally funded activities (planning through implementation) are not disproportionately adversely impacting certain populations. These populations include low income persons and populations as defined by the U.S. Department of Health and Human Services (HHS) Poverty Guidelines and minority persons and populations (Black, Hispanic, Asian American, American Indian and Alaskan Natives). As such, public involvement and outreach for the LRTP must adhere to Presidential Executive Order 12898, Environmental Justice (EJ).

Comanche County's racial and ethnic composition is 63.4\% White, 17.2\% Black or African American, 5.5\% Native American, 2.4\% Asian and 5.4\% Hispanic or Latino. In comparison, Oklahoma's racial ethnic composition for 2013-2017 ACS was 72.6\% White, 7.3\% African American, 7.4\% American Indian, 2.1\% Asian and 10.1\% Hispanic or Latino. Data from 20132017 ACS identifies Comanche County persons in poverty at 16.8%. Low income populations are defined by the FHWA for transportation planning purposes as families of four (4) with a household income that is below the poverty guidelines set by HHS. The HHS 2018 poverty guidelines for a family of four is \$25,750.

As part of the LRTP development and public outreach process, consultation with federally recognized tribes in the region was initiated. Several environmental laws require tribal consultation during project development. The Kiowa Tribe, Comanche Nation, Fort Sill Apache Tribe and Apache Tribe, were identified and invited to participate in the planning process. In addition, a copy of the LRTP was mailed to each tribal headquarters during the public review process.

Coordination with Other Plans

The process to identify goals and objectives for the county started with a review and comparison of goals and objectives from other related planning documents and policies to ensure general consistency. This review included:

- FAST Act Federal Planning Factors,
- MAP-21 Federal Planning Factors,
- 2012 Transit Gap Overview and Analysis,
- Oklahoma Mobility Plan,
- 2017 ODOT Rail Plan,
- OKCARTS 2035 Plan,
- Lawton MPO Long Range Transportation Plan,
- Comanche County Community Health Improvement Plan, 2015-2020,
- Fort Sill Joint Land Use Study, December 2018,
- Oklahoma Aeronautics Commission,
- 2018-2022 Oklahoma Freight Transportation Plan,
- ODOT 2015-2040 Long Range Transportation Plan.

Conversation and consultation were initiated and will be ongoing with the local and State Agencies (including, but not limited to: State Historic Preservation Office, Oklahoma Department of Transportation, Oklahoma Department of Environmental Quality, Oklahoma Water Resources Board, Oklahoma Department of Wildlife Conservation, Aeronautics Commission, and Bureau of Indian Affairs. All the above agencies will be given an opportunity for input during the Public Review and Comment period.

Public involvement is an integral part of the transportation process. SORTPO is proactive in its efforts to effectively communicate with the public and has adopted a PPP to ensure that the transportation planning process and procedures complies with federal requirement for public involvement and participation. These procedures provide opportunities for the
 public to take an active role in the decision-making process.

The SORTPO hosted public meetings and/or provided notice of availability for public outreach to involve interested parties in the early stages of the plan development. Notices of public hearings and/or notices of availability for public outreach for the RTPO were published in local newspapers and SORTPO website. Surveys were distributed throughout the County and were made available at www.sortpo.org. Appendix 4.1 provides a summary of the survey results. Appendix 4.2 contains information identifying the public outreach processes utilized in development of the 2040 Comanche County LRTP.

Chapter 5: Transportation Recommendations

This chapter identifies the recommendations and summary of improvements that were developed because of the previous review of demographics, growth, activity generators, transportation system and other such issues. It is assumed that only Comanche County projects included in the FY 2019-2026 ODOT 8 Year Construction Work Program, FY 2019 2022 Asset Preservation Program, FY 2019-2023 CIRB and those identified by cities and towns will be constructed by the year 2040 .

The projects included in the LRTP may have potential funding from a single source or multiple sources. Each project has its own unique components relative to only that project and while there are many funding programs within various state and federal agencies, each project must be evaluated on its own merits to determine which programs will apply. It should be noted that while many potential funding sources are identified for each project, these represent the primary sources and additional sources not listed may also be available. When implementing this plan, SORTPO will continue to review potential funding sources as they become available or as projects become eligible for other sources. SORTPO will expand on this effort by identifying additional projects that are needed in the county and helping local governments with the identification of funding sources for those projects.

Not all the recommendations are for constructed improvements.
 In some cases, studies must be conducted to determine if the improvement is warranted (installation of new traffic signals, for example). In other cases, studies should be undertaken to develop a comprehensive set of solutions.

Transportation Projects

The ODOT 8 Year Construction Work Program FFY 2019-2026 assembles projects according to anticipated state and federal fund categories. Regarding federally funded projects, the current plan is fiscally balanced in that the total project costs do not exceed the anticipated federal funds. ODOT policy prohibits start of future projects until all funding is in place and federal regulations dictate projects cannot be programmed in the Statewide Transportation Improvement Program (STIP) unless there is a programmatic and financial game plan for completing the project within six (6) years.

Table 5.1 identifies projects through the year 2040 and includes those identified in the FY 2019-2026 ODOT 8 Year Construction Work Program, FFY 2019-2022 Asset Preservation Program, FF 2019-2023 CIRB and other projects such as development of studies, plans, and collection of data identified in Chapter 1 goals and strategies. The development of studies, plans and collection of data can be included in SORTPO's PWP.

Table 5.1: Comanche County Transportation Projects

GENERAL LOCATION	PROJECT YEAR	DESCRIPTION	FUNDING STATE / FEDERAL
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	Develop a clearinghouse for regional data sets, such as pavement management systems and geographic information systems.	SPR/Local
Comanche County	$\begin{aligned} & \hline 2019- \\ & 2023 \\ & \hline \end{aligned}$	Conduct a freight assessment for the county.	SPR/Local
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	Develop a system to collect and monitor changes in population, employment, and major employers by Traffic Analysis Zone.	SPR/Local
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	Develop data collection standards.	SPR/Local
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	Establish procedures that enhance the consultation and coordination of transportation planning with local, regional, state and tribal government representatives.	SPR/Local
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	Conduct speed study at intersection locations with high accident severity index and corridors with major attractors.	SPR/Local
Comanche County	$\begin{aligned} & 2019- \\ & 2023 \end{aligned}$	SH 58: FROM SH 49 NW 6.4 MIS. R/W FOR 30427(04)	\$ 1,209,600
Comanche County	$\begin{aligned} & \hline 2019- \\ & 2023 \\ & \hline \end{aligned}$	SH-115: OVER UNNAMED CREEK JUST SOUTH OF MEERS STORE UT FOR JP 29579(04)	\$ 14,525,762
Comanche County	$\begin{gathered} \hline 2019- \\ 2023 \end{gathered}$	US 277: FROM JUST E. OF THE NB H.E. BAILEY TPK OFF RAMP E. 0.4 MIS. TO THE US 277/SH 7 INTERSECTION RW FOR 33758(04)	\$ 430,456
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	US-277: FROM 1.56 MIS N. OF COTTON C/L, EXTEND N. 3.0 MILES (INCLUDES IMPROVEMENTS TO 3 INTERSECTIONS AT ENTRANCES TO GERONIMO)	\$ 2,319,385
$\begin{gathered} \text { Comanche } \\ \text { County } \end{gathered}$	$\begin{aligned} & \hline 2019- \\ & 2023 \\ & \hline \end{aligned}$	SH 7: WESTBOUND BRIDGE OVER EAST CACHE CREEK 1.1 MIS. E. OF US281B	\$ 404,390
Comanche County	$\begin{aligned} & \hline 2019- \\ & 2023 \\ & \hline \end{aligned}$	SH 17: OVER LITTLE BEAVER CREEK 5.80 MIS. E. OF US 277 IN ELGIN UT FOR 31044(04)	\$ 295,000
Comanche County	$\begin{aligned} & \hline 2019- \\ & 2023 \\ & \hline \end{aligned}$	SH-115: OVER UNNAMED CREEK JUST SOUTH OF MEERS STORE	\$ 430,456
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	SH 58: FROM SH 49 NW 6.4 MIS. UT FOR 30427(04)	\$ 2,762,000
$\begin{gathered} \text { Comanche } \\ \text { County } \end{gathered}$	$\begin{aligned} & \hline 2019- \\ & 2023 \\ & \hline \end{aligned}$	SH 17: OVER LITTLE BEAVER CREEK 5.80 MIS. E. OF US 277 IN ELGIN	\$ 65,000
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	US 277: FROM JUST E. OF THE NB H.E. BAILEY TPK OFF RAMP E. 0.4 MIS. TO THE US 277/SH 7 INTERSECTION UT FOR 33758(04)	\$ 290,000
Comanche County	$\begin{gathered} \hline 2019- \\ 2023 \\ \hline \end{gathered}$	SH 58: FROM SH 49 NW 6.4 MIS.	\$ 3,500,000

2040 Comanche County Long Range Transportation Plan

GENERAL LOCATION	PROJECT YEAR	DESCRIPTION	FUNDING STATE / FEDERAL	
Comanche County	$\begin{aligned} & \hline 2019- \\ & 2023 \end{aligned}$	I-44 NB/SB OVER SH-49, JCT. 1-44 \& SH-49	\$	1,600,000
Comanche County	$\begin{aligned} & \hline 2019- \\ & 2023 \end{aligned}$	EW 1710 CR; OVER I-44 APPROX. 2 MILES NORTH OF SH-36	\$	350,000
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	I-44 NB/SB OVER WOLF CREEK, 2.7 MI. NORTH OF SH-36 JCT.	\$	1,600,000
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	I-44NB/SB OVER FT. SILL RD. \& UP RR, 11.6 MI N. OF SH. 36	\$	800,000
Comanche County	$\begin{aligned} & 2019- \\ & 2023 \end{aligned}$	BRIDGE AND APPROACHES (EW-169) OVER EAST CACHE CREEK, 2.0 MILES SOUTH AND 1.0 MILE EAST OF JCT. I-44/SH-7	\$	1,350,000
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	BRIDGE AND APPROACHES (EW-157) OVER BEAVER CREEK, 0.8 MILES SOUTH AND 0.8 MILES EAST OF STERLING	\$	819,000
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	UTILITIES FOR BRIDGE AND APPROACHES (EW157) OVER BEAVER CREEK, 0.8 MILES SOUTH AND 0.8 MILES EAST OF STERLING		\$40,000
Comanche County	$\begin{gathered} \hline 2019- \\ 2023 \end{gathered}$	GRADE, DRAIN AND SURFACE ON TRAIL ROAD (NS-265), BEGIN AT SH-17 AND EXTEND SOUTH 5.7 MILES	\$	6,240,000
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	BRIDGE AND APPROACHES (EW-165) OVER WEST CACHE CREEK, 1.1 MILES SOUTH AND 0.4 MILES WEST OF JCT. US62/SH115	\$	2,100,000
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	RIGHT OF WAY FOR BRIDGE AND APPROACHES (EW-165) OVER WEST CACHE CREEK, 1.1 MILES SOUTH AND 0.4 MILES WEST OF JCT. US62/SH115		\$40,000
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	UTILITIES FOR BRIDGE AND APPROACHES (EW165) OVER WEST CACHE CREEK, 1.1 MILES SOUTH AND 0.4 MILES WEST OF JCT. US62/SH115		\$75,000
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	CONTRACT PE FOR BRIDGE AND APPROACHES (EW-165) OVER WEST CACHE CREEK, 1.1 MILES SOUTH AND 0.4 MILES WEST OF JCT. US62/SH115		\$90,000
Comanche County	$\begin{aligned} & \hline 2019- \\ & 2023 \\ & \hline \end{aligned}$	BRIDGE AND APPROACHES (EW-154) OVER NINE MILE BEAVER CREEK, 2.2 MILES EAST OF ELGIN	\$	1,375,000
Comanche County	$\begin{aligned} & 2019- \\ & 2023 \end{aligned}$	UTILITIES FOR BRIDGE AND APPROACHES (EW154) OVER NINE MILE BEAVER CREEK, 2.2 MILES EAST OF ELGIN		\$75,000
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	CONTRACT PE CO BR (NS246) OVER PERSIMMON CREEK, 5.0 MIS. E. AND 3.1 MIS. N. OF JCT. SH5/SH 36		\$90,000
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	BRIDGE AND APPROACHES (EW-165) OVER ROCK CREEK, 1.1 MILES SOUTH AND 0.7 MILES WEST OF JCT. US 62/SH 115	\$	600,000

2040 Comanche County Long Range Transportation Plan

GENERAL LOCATION	PROJECT YEAR	DESCRIPTION	FUNDING STATE / FEDERAL
Comanche County	$\begin{aligned} & 2019- \\ & 2023 \end{aligned}$	RIGHT OF WAY CO BR (NS246) OVER PERSIMMON CREEK, 5.0 MIS. E. AND 3.1 MIS. N. OF JCT. SH5/SH 36	\$40,000
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	UTILITIES CO BR (NS246) OVER PERSIMMON CREEK, 5.0 MIS. E. AND 3.1 MIS. N. OF JCT. SH5/SH 36	\$40,000
Comanche County	$\begin{gathered} \hline 2019- \\ 2023 \end{gathered}$	CONTRACT PE CO BR (WE150) OVER LITTLE WASHITA RIVER, 6.2 MIS N. AND 1.5 MIS. E. OF JCT. SH17/SH65	\$90,000
Comanche County	$\begin{gathered} \hline 2019- \\ 2023 \\ \hline \end{gathered}$	BRIDGE REHABILITATION EW 1710 CR; OVER I-44 APPROX. 2 MIS. N. OF SH 36	\$350,000
Comanche County	$\begin{aligned} & 2019- \\ & 2023 \\ & \hline \end{aligned}$	BRIDGE REHABILITATION 1-44 NG/SB OVER FT. SILL RD. \& UP RR, 11.6 MIS. N. OF SH 36	\$800,000
Comanche County	$\begin{gathered} 2019- \\ 2023 \end{gathered}$	BRIDGE REHABILITATION I-44 NB/SB OVER SH 49, JCT. I-44 \& SH 49	\$450,000
Comanche County	$\begin{gathered} \hline 2019- \\ 2023 \end{gathered}$	BRIDGE REHABILITATION I-44 NB/SB OVER WOLF CREEK, 27 MIS N. OF SH 36 JCT.	\$1,600,000
Comanche County	$\begin{gathered} 2024- \\ 2028 \end{gathered}$	GRADE, DRAINING, BRIDGE \& SURFACE SH 58 FROM SH 49 NW 6.4 MIS.	\$14,525,762
Comanche County	$\begin{aligned} & 2024- \\ & 2028 \\ & \hline \end{aligned}$	BRIDGE \& APPROACHES SH 17 OVER LITTLE BEAVER CREEK, 5.8 MIS. E. OF US 277 IN ELGIN	\$1,209,600
Comanche County	$\begin{aligned} & 2024- \\ & 2028 \end{aligned}$	BRIDGES \& APPROACHES SH 7 WESTBOUND BRIDGE OVER EAST CACHE CREEK, 1.1 MIS. E OF US 281B	\$2,391,385
Comanche County	$\begin{gathered} 2024- \\ 2028 \end{gathered}$	WIDEN \& RESURFACE US 277 FROM 1.56 MIS. N. OF COTTON C/L, EXTEND N. 3.0 MIS (INCLUDES IMPROVEMENTS TO 3 INTERSECTIONS AT ENTRANCES TO Geronimo)	\$3,500,000
Comanche County	$\begin{aligned} & 2024- \\ & 2028 \end{aligned}$	RIGHT OF WAY US 277 FROM JUST E. OF THE NB H.E. BAILEY TPK OFF RAMP E. O. MIS. TO THE US77/SH 7 INTERSECTION	\$290,000
Comanche County	$\begin{gathered} 2024- \\ 2028 \end{gathered}$	UTILITIES US 277 FROM JUST E. OF THE NB H.E. BAILEY TPK OFF RAMP E. O. MIS. TO THE US77/SH 7 INTERSECTION	300,000
Comanche County	$\begin{aligned} & \hline 2024- \\ & 2028 \end{aligned}$	Develop procedures to identify and collect traffic count data at specific locations within the county.	SPR/Local
Comanche County	$\begin{aligned} & 2024- \\ & 2028 \end{aligned}$	Develop method to track the implementation of projects and regularly update the public on the status of projects, programs and finances.	SPR/Local
Comanche County	$\begin{aligned} & 2024- \\ & 2028 \end{aligned}$	Identify the locations of major employment centers, including existing and proposed developments and identify types of transportation available.	SPR/Local
Comanche County	$\begin{gathered} 2024- \\ 2028 \end{gathered}$	Working with area employers and stakeholders develop a database and map identifying transportation needs	SPR/Local

GENERAL LOCATION	$\begin{aligned} & \text { PROJECT } \\ & \text { YEAR } \end{aligned}$	DESCRIPTION	FUNDING STATE / FEDERAL
Comanche County	$\begin{gathered} \hline 2024- \\ 2028 \end{gathered}$	Develop database and mapping to identify the County's underrepresented	SPR/Local
Comanche County	$\begin{gathered} 2029- \\ 2032 \end{gathered}$	Develop a data file and create a map identifying location of wind farms and pipelines and relationship to communities and the transportation system.	SPR/LOCAL
Comanche County	$\begin{gathered} 2029- \\ 2032 \end{gathered}$	Develop a regional map that identifies tourism destinations and regionally significant facilities	SPR/LOCAL
Comanche County	$\begin{gathered} \hline 2029- \\ 2032 \end{gathered}$	Collect and routinely analyze safety and security data by mode and severity to identify changes and trends.	SPR/LOCAL
Comanche County	$\begin{gathered} \hline 2029- \\ 2032 \end{gathered}$	Collect and routinely analyze safety and security data by mode and severity to identify changes and trends.	SPR/LOCAL
Comanche County	$\begin{aligned} & \hline 2029- \\ & 2032 \end{aligned}$	Conduct study at intersection locations with high accident severity index and corridors with major attractors.	SPR/LOCAL
Comanche County	$\begin{gathered} 2033- \\ 2037 \end{gathered}$	Collect and routinely analyze safety and security data by mode and severity to identify changes and trends.	SPR/LOCAL
Comanche County	$\begin{gathered} 2038- \\ 2040 \end{gathered}$	Conduct study at intersection locations with high accident severity index and corridors with major attractors.	SPR/LOCAL

Source: ODOT, SORTPO

APPENDICES

Acronyms

AADT	Average Annual Daily Traffic
ACS	American Community Survey
ADA	Americans with Disabilities Act
ASCOG	Association of South Central Oklahoma Governments
BNSF	Burlington Northern San Frisco
C/L	County Line
CA	Community Airport
CDBG	Community Development Block Grant
CED	Circuit Engineering District
CIP	Capital Improvement Program
CIRB	County Improvement for Roads \& Bridges
COEDD	Central Oklahoma Economic Development District
COG	Council of Government
CRFC	Critical Rural Freight Connector
CUFC	Critical Urban Freight Connector
DA	District Airport
EDA	Economic Development Authority
EJ	Environmental Justice
FAST Act	Fixing America's Transportation Act
FAT	Fatality
FFY	Federal Fiscal Year
FHWA	Federal Highway Administration
FTA	Federal Transit Administration
FY	Fiscal Year
GIS	HHS

INCAP	Incapacitated
INJ	Injury
ISTEA	Intermodal Surface Transportation Efficiency Act
JCT	Junction
KCS	Kansas City Southern Railway
LATS	Lawton Area Transit System
LEP	Limited English Proficiency
LMPO	Lawton Metropolitan Planning Organization
LOS	Levels of Service
LRTP	Long Range Transportation Plan
MAP-21	Moving Ahead for Progress in the 21st Century Act
MI	Mile
MPO	Metropolitan Planning Organization
MSA	Metropolitan Statistical Area
MUTCD	Manual of Uniform Traffic Control Devices
NHFN	National Highway Freight Network
NHS	National Highway System
NODA	Northern Oklahoma Development Authority
NRHP	National Register of Historic Places
OARC	Oklahoma Association of Regional Councils
ODEQ	Oklahoma Department of Environmental Quality
ODOT	Oklahoma Department of Transportation
OTC	Oklahoma Tax Commission
PD	Property Damage
PHFS	Primary Highway Freight System
POE	Port of Entry
PPP	Public Participation Plan
PWP	Planning Work Program
R/W	Right of Way

RBA	Regional Business Airport
REAP	Rural Economic Action Plan
ROW	Right of Way
RTPO	Regional Transportation Planning Organization
S/L	State Line
SAFETEA-LU	Safe, Accountable, Flexible and Efficient Transportation Equity Act: A Legacy for Users
SH	State Highway
SHSP	Strategic Highway Safety Plan
SLWC	Stillwater Central
SORTPO	Southwest Oklahoma Regional Transportation Planning Organization
SPR	State Planning \& Research
STIP	Statewide Transportation Improvement Program
STP	Surface Transportation Program
STP	Surface Transportation Program
STRAHNET	Strategic Highway Network
SWODA	South Western Oklahoma Development Authority
TAP	Transportation Alternate Program
TAZ	Traffic Analysis Zone
UP	Union Pacific
US	United States
USDA	U.S. Department of Agriculture
USDOT	U.S. Department of Transportation
UT	Utilities
VMT	Vehicle Miles Traveled

Definitions

Accident Severity Index - A measure of the severity of collisions at a location, derived by assigning a numeric value according to the severity of each collision and totaling those numeric values.

Capacity - The maximum number of vehicles that can pass over a given section of a lane or roadway in one direction during a given period under prevailing roadway and traffic conditions.

Census Tracts - Small areas with generally stable boundaries, defined within counties and statistically equivalent entities, usually in metropolitan areas and other highly populated counties. They are designed to be relatively homogeneous with respect to population characteristics, economic status and living conditions.

Capital Improvement Plan (CIP) - A comprehensive schedule of capital improvements needed within the city and establishes a program to accomplish those needs within the city's ability to pay.

Congestion - The level at which transportation system performance is no longer acceptable to the traveling public due to traffic interference.

Environmental Justice (EJ) - A 1994 Presidential Executive Order requiring agencies receiving federal funds to review if the benefits and burdens of transportation investments appear to be distributed evenly across the regional demographic profile and, if necessary, mitigation of such effects.

Functional Classification - Identification and categorization scheme describing streets according to the type of service they provide into one of four categories: principal arterials, minor arterials, collectors and local.

Functionally Obsolete Bridge - A bridge inadequate to properly accommodate the traffic can be due to inadequate clearances, either horizontal or vertical, approach roadway alignment, structural condition, or waterway adequacy. Any posted bridge which is not structurally deficient would be included in this category. Structures in this category could include narrow bridges.

General Aviation Airport - Provide access to the population and economic activity centers of the state.

Level of Service (LOS) - Refers to a standard measurement used by planners which reflects the relative ease of traffic flow on a scale of A to F with free-flow being rated LOS A and congested conditions rated as LOS F.

Local Sustaining Economies - Geographical regions that function with some degree of
independence from the rest of the state. The Oklahoma Department of Commerce (ODOC) has identified 47 of these regions.

Long Range Transportation Plan - Every state and MPO must develop a long-range transportation plan (LRTP) for transportation improvements, including a bicycle and pedestrian element. The LRTP looks twenty (20) years ahead and is revised every five (5) years.

Metropolitan Statistical Area - As designated by the U.S. Office of Management and Budget and defined by the U.S. Bureau of the Census, an MSA consists of the central county or counties containing a city or an urbanized area with a population of at least 50,000 and the adjacent or outlying counties that have close economic and social relationships with the central counties, with a total metropolitan population of at least 100,000.

Multi-modal - The consideration of more than one mode to serve transportation needs in each area. Refers to the diversity of options for the same trip; also, an approach to transportation planning or programming which acknowledges the existence of or need for transportation options.

National Highway System - Represents four percent (4\%) to five percent (5\%) of the total public road mileage in the U.S. This system was designed to contain the follow subcategories:
A. Interstate- The current interstate system retained its separate identity within the NHS along with specific provisions to add mileage to the existing Interstate subsystem.
B. Other Principal Arterials- These routes include highways in rural and urban areas which provide access between an arterial route and a major port, airport, public transportation facility or other intermodal transportation facility.
C. Intermodal Connecting Links- These are highways that connect NHS routes to major ports, airports, international border crossings, public transportation and transit facilities, interstate bus terminals and rail and intermodal transportation facilities.

National and State Scenic Byways - Recognize highways that are outstanding examples of our nation's beauty, culture and recreational experience in exemplifying the diverse regional characteristics of our nation.

Oklahoma City Area Regional Transportation Study (OCARTS) - refers to a geographical area within Central Oklahoma (for transportation planning) which includes all the currently urbanized area plus the surrounding area which is anticipated to become urbanized over the next 20 years. The OCARTS area encompasses all of Oklahoma County and Cleveland County and portions of Canadian, Cleveland, Comanche, Logan and McClain Counties.

Primary Commercial Service Airport - An airport that receives scheduled passenger service and enplanes 10,000 or more passengers annually, as reported by the FAA.

Strategic Highway Network(STRAHNET) - Designation given to roads that provide "defense access, continuity, and emergency capabilities for movements of personnel and equipment in both peace and war." STRAHNET includes Routes (for long-distance travel) and Connectors (to connect individual installations to the Routes). This system includes the Dwight
D. Eisenhower System of Interstate and Defense Highways, identified as strategically important to the defense of the United States.

Structurally Deficient Bridge - A bridge can be inadequate to carry legal loads, whether caused by obsolete design standards, structural deterioration, or waterway inadequacy. Structures in this category may include those posted to restrict load limits as well as those closed to all traffic.

Surface Transportation Program (STP) - A category of federal transportation funds administered by the Federal Highway Administration and allocated to states and metropolitan areas based on a prescribed formula. This category of funds can provide 80% of the cost to complete transportation improvement projects. These funds are flexible, and can be used for planning design, land acquisition, and construction of highway improvement projects, the capital costs of transit system development, and up to two years of operating assistance for transit system development.

Traffic Analysis Zones (TAZ)- A traffic analysis zone is the unit of geography most commonly used in conventional transportation planning models. The size of a zone varies and will vary significantly between the rural and urban areas. Zones are constructed by census block information.

Appendix A: Resolution 09-04

RESOLUTION NO. 09-04

CREATION OF THE RURAL TRANSPORTATION PLANNING ORGANIZATION COMMITTEE

WHEREAS, local business and community leaders have expressed a strong desire to convene and discuss transportation needs and goals in the eight-county SWODA Region, and

WHEREAS, regional transportation planning is encouraged by legislation of the Federal Highway Administration, and

WHEREAS, SWODA is the federally recognized regional planning organization for the eight-county area, and

WHEREAS, the SWODA Board of Trustees seeks to facilitate the planning process for surface, air and rail development to aid the region in economic development, workforce development, business and industry growth, tourism development and other pursuits;

NOW THEREFORE, BE IT RESOLVED by the Board of Trustees of the South-Western Oklahoma Development Authority does hereby create the Rural Transportation Planning Organization as a standing committee of the Authority.

PASSED AND APPROVED this 13th day of October 2009.

ATTEST:

Mike Brown
MIKE BROWN, Secretary

Appendix B: Resolution 16-06

RESOLUTION NO. 16-06 EXPANSION OF THE REGIONAL TRANSPORTATION PLANNING ORGANIZATION COMMITTEE

WHEREAS, local business and community leaders have expressed a strong desire to convene and discuss transportation needs and goals in the sixteen (16) county South Western Oklahoma Development Authority (SWODA) and Association of South Central Oklahoma Governments (ASCOG) region, and

WHEREAS, regional transportation planning is encouraged by legislation of the Federal Highway Administration, and

WHEREAS, SWODA is the federally recognized regional planning organization for the sixteen (16) county area, and

WHEREAS, the SWODA Board of Trustees seeks to facilitate the planning process for surface and rail development to aid the region in economic development, workforce development, business and industry growth, tourism development and other pursuits;

NOW THEREFORE, BE IT RESOLVED by the Board of Trustees of the South Western Oklahoma Development Authority does hereby expand the Regional Transportation Planning Organization as a standing committee of the Authority.

PASSED AND APPROVED this $8^{\text {th }}$ day of November, 2016

ATTEST:

John Dee Butchee, Secretary

Appendix C: Performance Measures

Performance measures for State departments of transportation (State DOT) and Metropolitan Planning Organizations (MPO) were established by the Moving Ahead for Progress in the 21st Century Act (MAP-21). This Act transformed the Federal-aid highway program by establishing new requirements for performance management to ensure the most efficient investment of Federal transportation funds. Performance management increases the accountability and transparency of the Federal-aid highway program and provides a framework to support improved investment decision-making through a focus on performance outcomes for key national transportation goals. As part of performance management, recipients of Federal-aid highway funds will make transportation investments to achieve performance targets that make progress toward the following national goals:

- Safety-To achieve a significant reduction in traffic fatalities and serious injuries on all public roads.
- Infrastructure condition-To maintain the highway infrastructure asset system in a state of good repair.
- Congestion reduction-To achieve a significant reduction in congestion on the NHS.
- System reliability-To improve the efficiency of the surface transportation system.
- Freight movement and economic vitality-To improve the national freight network, strengthen the ability of rural communities to access national and international trade markets, and support regional economic development.
- Environmental sustainability-To enhance the performance of the transportation system while protecting and enhancing the natural environment.
- Reduced project delivery delays - To reduce project costs, promote jobs and the economy, and expedite the movement of people and goods by accelerating project completion through eliminating delays in the project development and delivery process, including reducing regulatory burdens and improving agencies' work practices.

State Department of Transportation and Metropolitan Planning Organizations will be expected to use the information and data generated because of the new regulations to inform their transportation planning and programming decisions. The new performance aspects of the Federal-aid highway program that result from this rule will provide FHWA the ability to better communicate a national performance story and to assess the impacts of Federal funding investments more reliably.

The FHWA is required to establish performance measures to assess performance in 12 areas 1 generalized as follows:
(1) Serious injuries per vehicle miles traveled (VMT);
(2) Fatalities per VMT;
(3) Number of serious injuries;
(4) Number of fatalities;
(5) Pavement condition on the Interstate System;
(6) Pavement condition on the non-Interstate NHS;
(7) Bridge condition on the NHS;
(8) Performance of the Interstate System;
(9) Performance of the non-Interstate NHS;
(10) Freight movement on the Interstate System;
(11) Traffic congestion; and
(12) On-road mobile source emissions.

Table 3-1 in ODOT’s 2015-2040 Long- Range Transportation Plan compares the 2015-2040 LRTP Goals and Performance Measures. Below is information contained in Table 3.1 of this Plan.

Table 3-1 ODOT 2015-2040 Long Range Transportation Plan.
$\left.\begin{array}{|l|l|}\hline \text { 2015-2040 LRTP Goals } & \text { Recommended Performance Measure } \\ \hline \text { Safe and Secure Travel } & \begin{array}{l}\text { • Reduction in traffic related fatalities and serious injuries } \\ \text { - Rate and number of traffic fatalities annually on all } \\ \text { Oklahoma public roads } \\ \text { - Rate and number of traffic-related serious injuries } \\ \text { annually on all Oklahoma public roads }\end{array} \\ \hline \begin{array}{l}\text { Infrastructure } \\ \text { Preservation }\end{array} & \begin{array}{l}\text { Bridge Condition - Number of structurally deficient } \\ \text { bridges }\end{array} \\ \text { - Preservation of Pavement - Good/fair/poor condition } \\ \text { index for NHS highways }\end{array}\right]$

Source: Oklahoma Department of Transportation

Appendix 2.1: Comanche County, Demographic Information, 2013-2017 ACS

	Total		Percent	
	Estimate	Margin of Error	Estimate	Margin of Error
Total population	123,066	$* * * * *$	(X)	(X)
AGE				
Under 5 years	8,954	$+/-45$	7.3%	$+/-0.1$
5 to 9 years	7,833	$+/-429$	6.8%	$+/-0.3$
10 to 14 years	9,011	$+/-439$	6.4%	$+/-0.4$
15 to 19 years	11,503	$+/-206$	7.3%	$+/-0.2$
20 to 24 years	10,780	$+/-102$	9.3%	$+/-0.2$
25 to 29 years	9,653	$+/-130$	7.8%	$+/-0.1$
30 to 34 years	7,658	$+/-465$	6.2%	$+/-0.4$
35 to 39 years	7,408	$+/-473$	6.0%	$+/-0.4$
40 to 44 years	6,893	$+/-95$	5.6%	$+/-0.1$
45 to 49 years	7,499	$+/-83$	6.1%	$+/-0.1$
50 to 54 years	7,157	$+/-366$	5.8%	$+/-0.3$
55 to 59 years	6,122	$+/-365$	5.0%	$+/-0.3$
60 to 64 years	4,559	$+/-280$	3.7%	$+/-0.2$
65 to 69 years	3,562	$+/-284$	2.9%	$+/-0.2$
70 to 74 years	2,610	$+/-250$	2.1%	$+/-0.2$
75 to 79 years	1,902	$+/-198$	1.5%	$+/-0.2$
80 to 84 years	1,588	$+/-228$	1.3%	$+/-0.2$
85 years and over				
	32.6	$+/-0.2$	(X)	(X)
Median age (years)				

Source2013-2017 ACS, Demographic Age and Sex
Appendix 2.2: Comanche County, Occupation by Sex 2013-2017 ACS

	Total		Percent Male	Percent Female
	Estimate	Margin of Error	Estimate	Estimate
Civilian employed population 16 years and over	49,415	$+/-1,071$	51.9%	48.1%
Management, business, science, and arts occupations:	16,828	$+/-804$	46.4%	53.6%
Management, business, and financial occupations:	6,125	$+/-575$	55.7%	44.3%
Management occupations	4,461	$+/-473$	62.3%	37.7%
Business and financial operations occupations	1,664	$+/-324$	38.3%	61.7%
Computer, engineering, and science occupations:	1,741	$+/-275$	80.2%	19.8%

	Total		Percent Male	Percent Female
	Estimate	Margin of Error	Estimate	Estimate
	835	$+/-187$	82.4%	17.6%
	594	$+/-182$	91.6%	8.4%
	312	$+/-118$	52.6%	47.4%
	5,600	$+/-529$	38.8%	61.2%
Community and social services occupations	1,301	$+/-260$	37.8%	62.2%
Legal occupations	161	$+/-72$	63.4%	36.6%
Education, training, and library occupations	3,325	$+/-347$	35.8%	64.2%
Arts, design, entertainment, sports, and media occupations	813	$+/-288$	48.1%	51.9%
Healthcare practitioner and technical occupations:	3,362	$+/-396$	24.7%	75.3%
Health diagnosing and treating practitioners and other technical occupations	1,773	$+/-279$	30.9%	69.1%
Health technologists and technicians	1,589	$+/-292$	17.9%	82.1%
Service occupations:	10,132	$+/-714$	45.0%	55.0%
Healthcare support occupations	1,483	$+/-308$	8.4%	91.6%
Protective service occupations:	1,319	$+/-274$	76.5%	23.5%
Firefighting and prevention, and other protective service workers including supervisors	621	$+/-165$	73.9%	26.1%
Law enforcement workers including supervisors	698	$+/-228$	78.8%	21.2%
Food preparation and serving related occupations	3,400	$+/-444$	49.9%	50.1%
Building and grounds cleaning and maintenance occupations	1,917	$+/-323$	62.3%	37.7%
Personal care and service occupations	2,013	$+/-398$	26.5%	73.5%
Sales and office occupations:	11,267	$+/-759$	33.4%	66.6%
Sales and related occupations	4,756	$+/-494$	41.1%	58.9%
Office and administrative support occupations	6,511	$+/-593$	27.8%	72.2%

	Total		Percent Male	Percent Female
	Estimate	Margin of Error	Estimate	Estimate
Natural resources, construction, and maintenance occupations:	4,677	$+/-463$	92.8%	7.2%
Farming, fishing, and forestry occupations	65	$+/-39$	67.7%	32.3%
Construction and extraction occupations	2,409	$+/-367$	95.9%	4.1%
Installation, maintenance, and repair occupations	2,203	$+/-306$	90.1%	9.9%
Production, transportation, and material moving occupations:	6,511	$+/-611$	79.5%	20.5%
Production occupations	3,028	$+/-389$	78.3%	21.7%
Transportation occupations	1,944	$+/-331$	83.1%	16.9%
Material moving occupations	1,539	$+/-279$	77.1%	22.9%
Source: 2013-2017 Acs, Occupation by Sex				

Source: 2013-2017 ACS, Occupation by Sex
Appendix 2.3: Comanche County Industry by Sex, 2013-2017 ACS

Subject	Comanche County, Oklahoma			
	Total		Percent Male	Percent Female
	Estimate	Margin of Error	Estimate Estimate	49,415
$+/-1,071$	51.9%	48.1%		
Civilian employed population 16 years and over	871	$+/-158$	87.8%	12.2%
Agriculture, forestry, fishing and hunting, and mining:	390	$+/-123$	87.2%	12.8%
Agriculture, forestry, fishing and hunting	481	$+/-154$	88.4%	11.6%
Mining, quarrying, and oil and gas extraction	3,059	$+/-409$	92.2%	7.8%
Construction	4,385	$+/-454$	77.6%	22.4%
Manufacturing	6,169	$+/-173$	79.3%	20.7%
Wholesale trade	1,932	$+/-344$	50.7%	49.3%
Retail trade	1,496	$+/-311$	74.0%	22.8%
Transportation and warehousing, and utilities:	436	$+/-123$	88.1%	11.9%
Transportation and warehousing	897	$+/-246$	62.3%	37.7%
Utilities	2,563	$+/-381$	28.6%	71.4%
Information	1,709	$+/-312$	25.0%	75.0%
Finance and insurance, and real estate and rental and leasing:				
Finance and insurance				

Subject	Comanche County, Oklahoma			
	Total		Percent Male	Percent Female
	Estimate	Margin of Error	Estimate	Estimate
Real estate and rental and leasing	854	$+/-207$	35.7%	64.3%
Professional, scientific, and management, and administrative and waste management services:	3,988	$+/-431$	63.1%	36.9%
Professional, scientific, and technical services	2,250	$+/-286$	62.3%	37.7%
Management of companies and enterprises	12	$+/-16$	66.7%	33.3%
Administrative and support and waste management services	1,726	$+/-258$	64.1%	35.9%
Educational services, and health care and social assistance:	11,638	$+/-706$	24.2%	75.8%
Educational services	4,780	$+/-495$	30.8%	69.2%
Health care and social assistance	6,858	$+/-518$	19.5%	80.5%
Arts, entertainment, and recreation, and accommodation and food services:	5,194	$+/-578$	50.1%	49.9%
Arts, entertainment, and recreation	939	$+/-250$	56.5%	43.5%
Accommodation and food services	4,255	$+/-526$	48.7%	51.3%
Other services, except public administration	2,816	$+/-398$	49.7%	50.3%
Public administration	5,324	$+/-589$	55.8%	44.2%
Sose				

Source: 2013-2017 ACS, Industry by Sex
Appendix 2.4: Comanche County Educational Attainment 2013-2017, ACS

Subject	Comanche County, Oklahoma			
	Total		Percent Male	Percent Female
	Estimate	Margin of Error	Estimate	Estimate
Population 18 to 24 years	15,992	$+/-112$	(X)	(X)
Less than high school graduate	10.2%	$+/-237$	9.2%	11.8%
High school graduate (includes equivalency)	44.6%	$+/-421$	48.9%	38.2%
Some college or associate's degree	36.8%	$+/-510$	33.0%	42.6%
Bachelor's degree or higher	8.4%	$+/-290$	9.0%	7.5%
Population 25 years and over	77,391	$+/-112$	(X)	(X)

Subject	Comanche County, Oklahoma			
	Total		Percent Male	Percent Female
	Estimate	Margin of Error	Estimate	Estimate
Less than 9th grade	2.5%	$+/-306$	2.7%	2.4%
9th to 12th grade, no diploma	7.5%	$+/-525$	7.5%	7.6%
High school graduate (includes equivalency)	32.7%	$+/-999$	33.0%	32.4%
Some college, no degree	28.1%	$+/-796$	28.8%	27.4%
Associate's degree	7.2%	$+/-453$	6.7%	7.8%
Bachelor's degree	13.7%	$+/-670$	13.5%	13.9%
Graduate or professional degree	8.2%	$+/-612$	7.8%	8.5%
Percent high school graduate or higher	(X)	(X)	89.8%	90.0%
Percent bachelor's degree or higher	(X)	(X)	21.3%	22.4%
Population 25 to 34 years	20,433	$+/-168$	(X)	(X)
High school graduate or higher	91.3%	$+/-316$	90.4%	92.3%
Bachelor's degree or higher	21.8%	$+/-471$	20.0%	23.8%
Population 35 to 44 years	15,066	$+/-149$	(X)	(X)
High school graduate or higher	91.8%	$+/-312$	90.6%	93.1%
Bachelor's degree or higher	20.2%	$+/-347$	14.9%	26.1%
Population 45 to 64 years	27,671	$+/-129$	(X)	(X)
High school graduate or higher	90.5%	$+/-337$	90.2%	90.9%
Bachelor's degree or higher	23.5%	$+/-433$	23.5%	23.4%
Population 65 years and over	14,221	$+/-63$	(X)	(X)
High school graduate or higher	84.7%	$+/-272$	86.8%	83.0%
Bachelor's degree or higher	20.6%	$+/-319$	26.8%	15.5%
Soren				

Source2013-2017 ACS, Educational Attainment. "X" means not applicable or available.

Appendix 2.5: Comanche County, Housing Units and Vehicles Available 2013-2017 ACS

Subject	Comanche County, Oklahoma			
	Estimate	Margin of Error	Percent	Percent Margin of Error
HOUSING OCCUPANCY	51,669	$+/-240$	51,669	(X)
Total housing units	42,957	$+/-647$	83.1%	$+/-1.2$
Occupied housing units	8,712	$+/-618$	16.9%	$+/-1.2$
Vacant housing units				

Subject	Comanche County, Oklahoma			
	Estimate	Margin of Error	Percent	Percent Margin of Error
Homeowner vacancy rate	2.4	+/-0.6	(X)	(X)
Rental vacancy rate	12.1	+/-1.8	(X)	(X)
UNITS IN STRUCTURE				
Total housing units	51,669	+/-240	51,669	(X)
1-unit, detached	36,865	+/-633	71.3\%	+/-1.2
1-unit, attached	1,493	+/-222	2.9\%	+/-0.4
2 units	1,725	+/-292	3.3\%	+/-0.6
3 or 4 units	1,382	+/-227	2.7\%	+/-0.4
5 to 9 units	3,559	+/-368	6.9\%	+/-0.7
10 to 19 units	1,838	+/-350	3.6\%	+/-0.7
20 or more units	2,112	+/-290	4.1\%	+/-0.6
Mobile home	2,653	+/-270	5.1\%	+/-0.5
Boat, RV, van, etc.	42	+/-48	0.1\%	+/-0.1
HOUSING TENURE				
Occupied housing units	42,957	+/-647	42,957	(X)
Owner-occupied	23,051	+/-629	53.7\%	+/-1.3
Renter-occupied	19,906	+/-677	46.3\%	+/-1.3
Average household size of owner-occupied unit	2.65	+/-0.07	(X)	(X)
Average household size of renter-occupied unit	2.67	+/-0.07	(X)	(X)
VEHICLES AVAILABLE				
Occupied housing units	42,957	+/-647	42,957	(X)
No vehicles available	3,173	+/-381	7.4\%	+/-0.9
1 vehicle available	14,460	+/-678	33.7\%	+/-1.6
2 vehicles available	16,664	+/-676	38.8\%	+/-1.4
3 or more vehicles available	8,660	+/-573	20.2\%	+/-1.3

Source: 2013-2017 ACS, Physical Housing Characteristics for Occupied Housing Units

Appendix 2.6: Comanche County Means of Transportation, 2013-2017 ACS

ject	Comanche County, Oklahoma			
	Total		Male	Female
	Estimate	Margin of Error	Estimate	Estimate
Workers 16 years and over	56,360	+/-1,088	32,082	24,278
MEANS OF TRANSPORTATION TO WORK				
Car, truck, or van	84.9\%	+/-1.2	82.1\%	88.5\%
Drove alone	72.2\%	+/-1.5	70.2\%	74.9\%
Carpooled	12.7\%	+/-1.3	11.9\%	13.7\%
In 2-person carpool	9.7\%	+/-1.0	8.7\%	11.1\%
In 3-person carpool	1.7\%	+/-0.6	1.9\%	1.5\%
In 4-or-more person carpool	1.2\%	+/-0.4	1.3\%	1.1\%
Workers per car, truck, or van	1.09	+/-0.01	1.09	1.09
Public transportation (excluding taxicab)	0.8\%	+/-0.3	0.8\%	0.7\%
Walked	2.6\%	+/-0.5	2.9\%	2.2\%
Bicycle	0.2\%	+/-0.1	0.3\%	0.0\%
Taxicab, motorcycle, or other means	1.4\%	+/-0.4	1.4\%	1.3\%
Worked at home	10.2\%	+/-1.1	12.5\%	7.1\%
TRAVEL TIME TO WORK				
Less than 10 minutes	20.6\%	+/-1.6	19.0\%	22.5\%
10 to 14 minutes	23.7\%	+/-1.6	23.4\%	24.0\%
15 to 19 minutes	23.9\%	+/-1.4	24.8\%	22.7\%
20 to 24 minutes	15.3\%	+/-1.3	16.3\%	14.1\%
25 to 29 minutes	4.3\%	+/-0.6	4.2\%	4.4\%
30 to 34 minutes	5.9\%	+/-0.6	5.8\%	6.1\%
35 to 44 minutes	2.1\%	+/-0.5	2.1\%	2.2\%
45 to 59 minutes	2.0\%	+/-0.4	2.0\%	1.9\%
60 or more minutes	2.3\%	+/-0.5	2.4\%	2.1\%
Mean travel time to work (minutes)	16.7	+/-0.6	17.2	16.1
VEHICLES AVAILABLE				
Workers 16 years and over in households	51,128	+/-1,113	28,153	22,975
No vehicle available	2.9\%	+/-0.7	2.8\%	3.0\%
1 vehicle available	23.7\%	+/-1.6	20.5\%	27.6\%
2 vehicles available	42.9\%	+/-1.8	45.4\%	39.7\%
3 or more vehicles available	30.6\%	+/-1.9	31.3\%	29.7\%

[^1]Appendix 2.7: Comanche County Selected Economic, 2013-2017 ACS

Subject	Comanche County, Oklahoma		
	Estimate	Margin of Error	Percent
CLASS OF WORKER	49,415	$+/-1,071$	49,415
Civilian employed population 16 years and over	33,026	$+/-1,184$	66.8%
Private wage and salary workers	13,587	$+/-886$	27.5%
Government workers	2,742	$+/-381$	5.5%
Self-employed in own not incorporated business workers	60	$+/-59$	0.1%
Unpaid family workers			
Unys			

Source: 2013-2017 ACS, Industry by Sex, Occupation by Sex, Selected Economic Characteristics

Appendix 2.8: Comanche County Population and Employment by TAZ

TAZ No.	$\begin{aligned} & 2010 \\ & \text { POP } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \hline 2013- \\ 2017 \\ \text { POP } \end{gathered}$	$\begin{gathered} 2010 \\ \text { EMPL } \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 2013- \\ 2017 \\ \text { EMPL } \end{gathered}$
1	389	389	15	15
2	627	627	10	10
3	535	600	200	289
4	918	934	-	-
5	716	720	-	-
6	530	530	-	-
7	274	300	30	37
8	897	900	25	25
9	502	502	-	-
10	346	346	-	-
11	918	325	30	45
12	501	600	125	294
13	619	619	65	105
14	615	685	-	10
15	141	141	-	-
16	500	500	92	92
17	185	185	-	-
18	680	680	-	-
19	470	600	10	10
20	541	600	-	-
21	330	600	-	-
22	651	700	-	-
23	569	600	-	-
24	27	27	-	-
25	62	62	-	-
26	2499	2499	385	385
27	48	48	-	-
28	86	86	-	-
29	31	31	-	-
30	740	740	15	15
31	232	232	-	-
32	453	453	-	-
33	666	666	25	25
34	121	121	-	-
35	590	590	30	30
36	460	460	3	30

TAZ No.	2010 POP	2013- 2017 POP	2010 EMPL	$\mathbf{2 0 1 3 -}$ 2017 EMPL
100	490	490	25	25
101	246	246	245	605
102	342	500	25	25
103	74	74	92	115
104	432	432	65	85
105	85	85	285	325
106	674	674	25	45
200	634	634	200	255
201	19	19	115	135
202	633	633	65	75
300	504	504	75	80
301	386	386	115	135
400	317	317	30	30
401	447	447	40	40
402	1132	1132	300	445
403	811	811	315	430
404	220	220	325	425
500	645	645	265	285
501	642	642	175	185
LMPO	96,896	95,477	46,396	49,935

Source: US Census, LMPO,

Appendix 2.9: Comanche County Major Employers, 2018

BUSINESS / INDUSTRY NAME	STREET ADDRESS	CITY	$2018 \text { \# }$ EMPLOYEES	TAZ
Simple Simons Pizza	1 E. H Ave.	Cache	5-9	402
Cache Intermediate School	102 E. H Ave.	Cache	20-49	404
Cache Middle School	102 W H Ave.	Cache	20-49	404
Sonic Drive-In	112 E. H Ave.	Cache	20-49	404
Teen Challenge Sonrise Ranch	1123 NW 197th St.	Cache	10-19	19
Country Corner	16193 SH 115	Cache	10-19	19
Cache Senior High School	201 W H Ave.	Cache	50-99	404
Meer's Oklahoma Fire Dept.	26362 SH 115	Cache	10-19	2
Cache Primary School	310 W H Ave.	Cache	20-49	404
Cache City Hall	404 W. C Ave.	Cache	10-19	402
Cache Police Station	404 W. C Ave.	Cache	10-19	402
Playcare Inc.	409 W. C Ave.	Cache	10-19	402
Pizza Express	502 W. C Ave.	Cache	10-19	403
Goodness Coffee Shop	515 W. C Ave.	Cache	5-9	403
US Post Office	601 S. 8th St.	Cache	5-9	403
Bank of Wichitas	605 S. 8th St.	Cache	10-19	403
Comanche County District 3	W. Lee Blvd.	Cache	20-49	20
City Hall	302 3rd St.	Chattanooga	1-4	23
Hop \& Sack Stores	201 Thompson Ave.	Chattanooga	5-9	35
Pink Ice	210 Thompson Ave.	Chattanooga	5-9	23
Frazer Bank	309 4th St.	Chattanooga	5-9	23
Chattanooga Elementary School	403 3rd St.	Chattanooga	10[-19	23
Hop \& Sack Stores	408 3rd St	Chattanooga	20-49	35
Chattanooga Jr/High School	507 4th St	Chattanooga	20-49	23
Victory Home Health \& Hospice	104 Thoma Dr.	Elgin	20-49	101
Latimer Trucking	11596 NE Keeney Rd.	Elgin	5-9	11
Kids Under Contr. Daycare	11920 US 62	Elgin	10-19	12
Gas Mart Porter Hill	11959 US 62	Elgin	10-19	12
Comanche County District 2	13140 NE Kleeman Rd	Elgin	20-49	102
J \& D Anderson Trucking	302 2nd St.	Elgin	5-9	106
Dolese Bros Co	375 NW Dolese Rd	Elgin	50-99	12
Elgin Public Schools	501 K St	Elgin	100-249	103
Porter Hill Fire Dept.	56 NW Meers Porter Hill Rd.	Elgin	10-19	5
Arvest Bank	7438 US 277	Elgin	10-19	101
Subway	7439 US 277	Elgin	5-9	101

BUSINESS / INDUSTRY NAME	STREET ADDRESS	CITY	2018 \# EMPLOYEES	TAZ
Sonic Drive-In	7457 US Highway 277	Elgin	20-49	101
Billy Sims BBQ	7602 US 277	Elgin	10-19	101
China Garden	7602 US 277	Elgin	5-9	101
Mc Donald's	7738 US Highway 277 \# B	Elgin	20-49	101
Gas Mart	7740 US 277	Elgin	5-9	101
Super Stores	7759 US 277	Elgin	5-9	101
Elgin Police	7892 US 277	Elgin	5-9	101
MMG Elgin Family Med Clinic	7936 US 277	Elgin	5-9	101
Hacienda Las Margaritas	8176 SH 17	Elgin	5-9	101
Elgin City Hall	8183 SH 17	Elgin	1-4	104
Elgin Water Dept.	8183 SH 17	Elgin	5-9	104
Fat Boys Pizza	8209 US 277	Elgin	10-19	101
Bank of Wichita's	8217 US 277	Elgin	10-19	101
Trivet's Family Rest.	8225 SH 17	Elgin	5-9	104
Kid Central	8281 SH 17	Elgin	10-19	104
Williams Discount Food	8287 US Highway 277	Elgin	20-49	101
US Post Office	8292 SH 17	Elgin	10-19	101
Boompas Burgers	8298 US 277	Elgin	5-9	101
Comanche Spur Casino	9047 US 62	Elgin	100-249	12
Tiny Mae's Bar \& Grill	9201 SH 17	Elgin	5-9	11
Big Bob's Porta Potties	11516 SW Baseline Rd	Faxon	5-9	36
US Post Office	103 N. Selby	Fletcher	1-4	202
Fletcher High School	108 W Hornaday	Fletcher	20-49	202
Latimer Trucking	13054 NE King Rd.	Fletcher	10-19	8
Shiflett Transport Svc.	14227 NE North Dr.	Fletcher	5-9	7
Hop \& Sack Stores	14270 US 277	Fletcher	5-9	200
Multiple Community Svc Auth.	15257 NE North Dr.	Fletcher	10-19	7
Georgia-Pacific Corp	16850 NE 135th St	Fletcher	100-249	201
Fletcher Elementary School	202 W Cole Ave	Fletcher	20-49	202
First National Bank	401 E. Cole Ave.	Fletcher	5-9	202
Wildcat Express	402 N. US 277	Fletcher	5-9	200
Fletcher Police Dept	414 W. Cole Ave.	Fletcher	5-9	200
TDS Telecom	514 W. Cole Ave.	Fletcher	5-9	200
Geronimo Police Dept	100 W. Main St.	Geronimo	5-9	500
Geronimo Town Hall	100 W. Main St.	Geronimo	10-19	500
US Post Office	200 E. Main St.	Geronimo	1-4	501
Geronimo Elementary School	225 Iowa St	Geronimo	50-99	500

BUSINESS / INDUSTRY NAME	STREET ADDRESS	CITY	$2018 \text { \# }$ EMPLOYEES	TAZ
Geronimo School District	800 W. Main St.	Geronimo	20-49	501
Byington Janitorial	827 E. Main St.	Geronimo	10-19	501
Indy Superette	301 Showplace Blvd.	Indiahoma	5-9	16
Indiahoma School District 25	307 Chebahtah	Indiahoma	20-49	16
US Post Office	308 Main St.	Indiahoma	1-4	16
US Fish \& Wildlife Svc	32 Refuge Headquarters Rd.	Indiahoma	20-49	16
Indiahoma Volunteer Fire Dept.	900 Showplace Blvd.	Indiahoma	10-19	16
Indiahoma City Hall	900 SW Indiahoma Rd.	Indiahoma	5-9	16
Wichita Mountain Est. Fire Dept.	179 Curts Dr.	Lawton	10-19	14
Mangum Oil and Gas	5431 S. SH 65	Lawton	10-19	33
Red River Disposal	8202 SE Bethel Rd.	Lawton	10-19	32
Medicine Park Telephone Co	1 Big Rock	Medicine Park	100-249	3
Medicine Park Hall	130 E. Lake Dr.	Medicine Park	10-19	3
Old Plantation Restaurant	140 E Lake Dr	Medicine Park	20-49	3
Old Plantation Restaurant	140 E. Lake Dr.	Medicine Park	20-49	3
City Hall	154 E. Lake Dr.	Medicine Park	5-9	3
Riverside Café	180 E. Lake Dr.	Medicine Park	5-9	3
Lawton Water Treatment Plant	191 E. Lake dr.	Medicine Park	10-19	3
US Post Office	191 E. Lake dr.	Medicine Park	1-4	3
Lawton Filer Plant	82 E. Lake Dr.	Medicine Park	5-9	3
Sterling City Hall	1 S .5 th Ave.	Sterling	5-9	301
US Post Office	210 W. Main St.	Sterling	1-4	301
Holt Electric	24 W. Campbell	Sterling	5-9	300
Sterling Public Schools	400 S. Tiger St.	Sterling	50-99	301
Sterling Fire Dept.		Sterling	10-19	301

Source: SORTPO, US Census, OESC

Appendix 2.10: Environmental and Development Concerns

The environmental features and constraints were identified using secondary source information from the following: United States Environmental Protection Agency (USEPA), Oklahoma Geological Survey, Oklahoma Department of Fish and Wildlife Resources, Oklahoma Department for Environmental Quality (ODEQ), United States Department of Agriculture (USDA), United States Department of the Interior Fish and Wildlife Service (USFWS), United States Geological Survey (USGS), Oklahoma University Geographic Information System (GIS) and other state and local agencies

Streams are natural corridors that provide habitat for fish, insects, wildlife and recreational benefits to people such as hunting, fishing, boating, bird watching, as well as, aesthetic benefits. Streams also provide drinking water for wild animals, livestock and people. There are two (2) major rivers in the county, supplied by numerous streams; however, following years of extreme drought, many of these steams are dry. As of the origin of this plan, none are on the "watch list" of the Oklahoma Department of Environmental Quality (ODEQ) and none are designated as scenic waterways.

State and federal agencies classify plants and animals as threatened or endangered when their numbers are low or declining due to direct destruction (from development or pollution, for example) or loss or degradation of suitable habitat. The presence of a threatened or endangered species in an area is an indicator of a better or good quality environment. However, there is no state or federally listed endangered species specific to Comanche County.

The Special Flood Hazard Area is an area designated width along a stream or river with a 1% chance of flooding annually. These areas are protected to prevent any increase in the risks or severity of possible future floods and to maintain their natural and ecological benefits.

Currently Comanche is designated as an "attainment area" by the EPA for air quality. The ODEQ operates a monitoring station in north central Lawton. This station collects samples the air for Comanche County for ground level ozone. Information collected at this site is used by EPA to establish air quality for the county. The LMPO administers an air quality program for the area.

The National Register of Historic Places (NRHP) is a list of properties determined significant in American history, architecture, archaeology, engineering, or culture, by virtue of design or architectural criteria, association with historical persons and events, and/or valueforhistoric or prehistoric information. Under state and federal law, NRHP listed and NRHP eligible properties are afforded equal protection from impact. NRHP properties are designated to help state and local governments, Federal agencies, and others identify important historic and archaeological resources, to ensure their protection, either through preservation, or minimization and mitigation of impact.

Appendix 2.11: Comanche County Environmental Features

DESCRIPTION	LOCATION
Lawton Lawtonka	North of Lawton
Lake Ellsworth	Elgin
Wichita Mountains Wildlife Refuge	County
Arrastra Site - Cedar Plantation,	Wichita Mountains Wildlife Refuge
Fort Sill	Lawton - Fort Sill
Buffalo Lodge	Cache
Fort Sill Indian School	Lawton
Ferguson House	Cache
First State Bank of Indiahoma	Indiahoma
Ingram House	Cache
Medicine Park Hotel and Anne	Medicine Park
Meers Mining Camp	Meers
Quanah Parker Star House	Cache
Penateka	Elgin
Sy	

Source: SORTPO
Appendix 2,12: Comanche County Type of Collision Total, 2012-2017

Type Of Collision	Total				
	Fat	Inj	PD	Tot	Pct
Rear-End (front-to-rear)	8	1,328	3,085	4,421	30
Head-On (front-to-front)	6	57	50	113	1
Right Angle (front-to-side)	10	739	1,036	1,785	12
Angle Turning	4	626	1,522	2,152	15
Other Angle	-	23	58	81	1
Sideswipe Same Direction	3	121	921	1,045	7
Sideswipe Opposite Direction	-	19	96	115	1
Fixed Object	27	666	1,785	2,478	17
Pedestrian	12	135	14	161	1
Pedal Cycle	--	47	12	59	0
Animal		19	225	244	2
Overturn/Rollover	12	148	69	229	2
Vehicle-Train	-	-	1	1	-
Other Single Vehicle Crash	1	51	145	197	1
Other	2	126	1,514	1,642	11
Total	85	4,105	10,533	14,723	100
Percent	1	28	72	100	-

Source: ODOT Traffic Engineering Div. Collision Analysis and Safety Branch *Include incapacitating, non-incapacitating and possible injuries.

Appendix 2.13: Comanche County Collision Vehicles by Vehicle Type, Total, 2012-2017

VEHICLE TYPE	FAT	INJ *	PD	TOT	PCT
Passenger Vehicle-2 Door	4	375	1,633	2,012	8
Passenger Vehicle-4 Door	16	2,069	8,943	11,028	41
Passenger Vehicle-Convertible	-	20	108	128	1
Pickup Truck	26	824	4,853	5,703	21
Single-Unit Truck (2 axles)	-	15	151	166	1
Single-Unit Truck (3 or more axles)	-	6	84	90	0
School Bus	-	5	70	75	0
Truck/Trailer	-	2	40	42	0
Truck-Tractor (bobtail)	-	3	78	81	0
Truck-Tractor/Semi-Trailer	-	13	225	238	1
Truck-Tractor/Double	-	1	5	6	-
Truck-Tractor/Triple	-	-	1	1	-
Bus/Large Van (9-15 seats)	-	6	37	43	0
Bus (16+ seats)	-	9	73	82	0
Motorcycle	13	239	80	332	1
Motor Scooter/Moped	-	8	2	10	-
Motor Home	-	-	11	11	-
Farm Machinery	-	-	3	3	-
ATV	1	4	1	6	-
Sport Utility Vehicle (SUV)	12	857	3,864	4,733	18
Passenger Van	2	152	820	974	4
Truck More Than 10,000 lbs.	-	3	34	37	0
Van (10,000 lbs. or less)	-	12	58	70	0
Other	-	25	988	1,013	4
Total	74	4,648	22,162	26,884	100
Percent	0	17	82	100	
Preor					

[^2]
Appendix 2.14: Two Lane Highways Without Paved Shoulders

Appendix 2.15: Steep Hills and Sharp Curves

Appendix 2.16: Comanche County Annual Average Daily Traffic Count 2018

Appendix 2.17: Functional Classification and Road Systems

Functional classification is the grouping of roads, streets and highways into integrated systems ranked by their importance to the general welfare, motorist and land use structure. It is used to define the role that any road should play in providing mobility for through movements and access adjoining land. This grouping acknowledges that roads have different levels of importance and provides a basis for comparing roads fairly.

Functional classification can be used for, but is not limited to, the following purposes:

- Provide a framework for highways serving mobility and connecting regions and cities within a state.
- Provide a basis for assigning jurisdictional responsibility according to the overall importance of a road.
- Provide a basis for development of minimum design standards according to function.
- Provide a basis for evaluating present and future needs.
- Provide a basis for allocation of limited financial resources.

Historically, one of the most important uses of functional classification of streets has been to identify streets and roads that are eligible for federal funds. The original federal aid primary, federal aid secondary, federal aid urban and national interstate systems all relied on functional classification to select eligible routes. In 1991, the Intermodal Surface Transportation Efficiency Act (ISTEA) eliminated the primary, secondary and urban federal aid systems and created the National Highway System (NHS). ISTEA continued the requirement that a street, road or highway had to be classified higher than a "local" in urban areas and higher than a "local" and "minor collector" in rural areas before federal funds could be spent on it. The selection of routes eligible for NHS funding was also based on functional criteria. While eligibility for federal funding continues to be an important use for functional classification, it has also become an effective management tool in other areas of transportation planning.

Streets are grouped into functional classes according to the character of service they are intended to provide. Oklahoma's Functional Classification system undergoes a comprehensive review after each decennial U.S. Census. The functional classification of streets includes the following functional classes: Interstate, Freeway, Rural Principal Arterial, Rural Minor Arterial, Rural Major Collector and Rural Minor Collector.

Rural Principal Arterial - A rural principal arterial road includes the following service characteristics:

- Traffic movements with trip length and density suitable for substantial statewide travel.
- Traffic movements between urban areas with populations over 25,000.
- Traffic movements at high speeds.
- Divided four-lane roads.
- Desired LOS C.

Rural Minor Arterial - A rural minor arterial road includes the following service characteristics:

- Traffic movements with trip length and density suitable for integrated interstate or inter-county service.
- Traffic movements between urban areas or other traffic generators with populations less than 25,000 .
- Traffic movements at high speeds.
- Undivided four-lane roads.
- Striped for one or two lanes in each direction with auxiliary lanes at intersections as required by traffic volumes.
- Desired LOS C.

Rural Major Collector - A rural major collector road includes the following service characteristics:

- Traffic movements with trip length and density suitable for inter-county service.
- Traffic movements between traffic generators, between traffic generators, larger cities and between traffic generators and routes of a higher classification.
- Traffic movements subject to a low level of side friction.
- Development may front directly on the road.
- Controlled intersection spacing of 2 miles or greater.
- Striped for one lane in each direction with a continuous left turn lane.
- Desired LOS C.

Rural Minor Collector - A rural minor collector road includes the following service characteristics:

- Traffic movements between local roads and collector roads.
- Traffic movements between smaller communities and developed areas.
- Traffic movements between locally important traffic generators within their remote regions.
- Two-lane undivided roads with intersections at grade and designed to take a minimum interference of traffic from driveways appropriate to a rural setting.
- Striped for one lane in each direction.
- Desired LOS B.

Rural Local Road - A rural local road includes the following service characteristics:

- Two-lane undivided roads with intersections at grade.
- Traffic movements between collectors and adjacent lands.
- Traffic movements involving relatively short distances.
- Desired LOS A.

Level of Service

Street Capacity: The measure of a street's ability to accommodate the traffic volume along the street. Level of Service Ranges from LOS A: Indicates good operating conditions with little or no delay, to LOS F, which indicates extreme congestion and long vehicle delays.

The following is a list of the various LOS with abbreviated definitions from the Highway

Capacity Manual:

- LOS A: Describes a condition with low traffic volumes with little or no delays. There is little or no restriction in maneuverability due to the presence of other vehicles. Drivers can maintain their desired speeds and can proceed through signals without having to wait unnecessarily. Operating capacity can be measured as less than thirty percent (30\%) of capacity.
- LOS B: Describes a condition with stable traffic flow with a high degree of choice to select speed and operating conditions, but with some influence from other drivers. Operating capacity can be measured as less than fifty percent (50\%) of capacity.
- LOS C: Describes the beginning of the range of flow in which the operation of individual users becomes significantly affected by interactions with others in the traffic stream. LOS C is normally utilized as a measure of "average conditions" for design of facilities in suburban and urban locations. Operating capacity can be measured as less than sixty-nine percent (69\%) of capacity.
- LOS D: Describes high density flow in which speed and freedom to maneuver is severely restricted even though flow remains stable. LOS D is considered acceptable during short periods of time and is often used in large urban areas. Operating capacity can be measured as less than seventy percent (70\%) to ninety percent (90\%) of capacity.
- LOS E: Describes operating conditions at or near capacity. Operations at this level are usually unstable, because small increases in flow or minor disturbances within the traffic stream will cause breakdowns. Operating capacity can be measured as between ninety percent (90\%) to ninety-nine percent (99\%) of capacity.
- LOS F: Is used to define forced or breakdown flow. This condition exists whenever the amount of traffic approaching a point exceeds the amount that can be served. LOS F is characterized by demand volumes greater than the roadway capacity. Under these conditions, motorists seek other routes in order to Bypass congestion, thus impacting adjacent streets. Operating capacity can be measured above one hundred percent (100\%) of capacity.

Appendix 2.18: Comanche County Functional Classification

Appendix 2.19: Oklahoma Structurally Deficient and Functionally Obsolete Bridges

Appendix 2.20: Comanche County On System Bridges with Sufficiency Rate

Location	Sufficiency	FOSD	Year Built	ADT Total
1.1 E. \& . 8 S. OF JCT. SH65 \& 17	21.2	1	1906	75
2.8 S. \& . 8 E. OF JCT. SH65 \& 17	26.2	1	1906	25
2.1 W. . 1 N. OF SH 49	17.8	1	1906	200
2S. 1E. OF US277 \& SH17	25.9	1	1910	25
.5S. 3.4 W. OF FAXON	80.2	0	1915	24
4.8 MI. N. JCT. SH49	60.1	0	1918	1200
0.4 MI. S. MEERS	73	0	1919	320
.2N. OF LEE BLVD. \& .2E. OF 11 ST.	24.5	1	1920	50
1.2 S. 2.2 E. OF US 62	67.4	2	1925	3626
1.4 S. 9.3 W. OF I-44	73.8	0	1925	100
. 4 E. 3.4 N. OF SH 49	58.8	0	1925	100
1 W. \& 2.5 S. OF JCT. SH7 \& SH 65	81.9	0	1925	100
1 W. \& 3.6 S. OF JCT. SH7 \& SH 65	83.7	0	1925	100
3.9 N. \& . 5 E. JCT. US 277 \& SH 17	25.1	1	1925	119
3. E. 10.9 S. OF US 62 \& SH 115	54.8	1	1925	100
4. N. 2.3 W. OF SH 49	51.6	1	1925	578
1.9 MI. E. JCT. SH65	69.7	0	1926	8000
2.0 MI. W. STEPHENS C/L	69.7	0	1926	8000
1.4 MI. E .JCT. US 281B	69.9	0	1927	18100
2.5 MI. N. JCT. US 277	93.4	0	1928	3500
1.8 MI. S. CADDO CL	94.2	0	1928	3100
0.3 MI. N. JCT. US277	93	0	1928	3700
4. N. 1.1 E OF SH 49	86.7	0	1928	610
. 2 N. \& . 2 E. OF JCT. US281 \& 49	77.7	0	1928	100
. 4 MI. S. . 9 W CACHE	51.9	2	1929	1553
0.8 MI. E. JCT. US281B	73.6	0	1930	18500
1. W. 8.3 S. OF US 62 \& SH 115	48.8	1	1930	100
1.2 S. 6.1 W. OF US 62	82.7	0	1930	100
3.4 S. 8.8 W. OF I-44	84.8	0	1930	25
$2 \mathrm{~S} . \& 4 \mathrm{~W}$. OF JCT. I44 \& SH 36	43	1	1930	59
3.8 E. \& 1. S. OF JCT. US 277 \& SH 17	72.7	0	1930	100
0.3 MI. N. JCT. SH 7	83.2	0	1930	11550
1.9 S. 4.4 W OF US 62	37.7	1	1930	731
3 N. \&. 3 W. OF JCT. US 277 \&	42.1	2	1930	505
1.1 MI. W. INDIAHOMA	49.6	0	1930	321
0.2 MI. E. JCT. US 281B	53.4	0	1931	16850
4.2 MI. N. JCT. US 281B	69.9	0	1932	24800

Location	Sufficiency	FOSD	Year Built	ADT Total
$\begin{aligned} & \text { 2.8 S \&2.9 W. OF JCT. SH } 65 \text { \& } \\ & \text { SH17 } \end{aligned}$	47.6	1	1932	44
1.2 S. . 5 W. OF US 62	39.2	2	1932	1553
0.8 MI. COTTON CL	93.7	0	1933	2300
0.9 MI. COTTON CL	48.7	2	1933	2300
. 5 E. \& 2.1 N. OF JCT. I-44 \& SH 36	71.6	0	1933	3460
. 5 E. \& 2.6 N. OF JCT. I-44 \& SH 36	68.3	2	1933	3450
. 5 E. \& 2.5 N. OF JCT. I-44 \& SH 36	64.2	2	1933	3440
0.5 MI. W. JCT. US 62	73.7	0	1934	4600
1.2 S. 5.6 E. OF US 62	65.9	2	1936	3626
1.2 S. 1.6 E. OF US 62	64.7	2	1936	3626
1.2 S. . 7 E. OF US 62	66.6	2	1936	4988
1.2 S. 1.3 E. OF US 62	50.7	2	1936	3626
1.2 S. 3.9 E. OF US 62	49.3	2	1936	3626
$4 \mathrm{~N} . \mathrm{CHATTANOOGA}$	86.8	0	1937	100
1.2 S. 5.4 E. OF US 62	84.9	0	1937	3626
BETWEEN $13^{\text {th }} \& 14^{\text {th }}$	57.6	1	1937	510
2.2 MI. N. JCT. SH49	68	0	1938	5700
1.5 S. 7.6 E. OF US 62 \& SH 115	86.8	0	1938	321
1.9 S. 5.9 W. OF US 62 \& SH 115	44.4	1	1938	731
1.2 S. 10.5 W. OF US 62	85.7	0	1938	207
1.2 S. 9.9 W. OF US 62	44.6	1	1938	207
3 W. \& 3.4 N. OF JCT. SH 7 \& SH 65	84.4	0	1938	811
4.6 MI. N. CHATTANOOGA	75.8	0	1939	189
3.9 MI. N. CHATTANOOGA	45.7	1	1939	189
AT 13 ${ }^{\text {th }}$ AND 'E'	74.6	0	1939	1101
1.9 MI. N. CHATTANOOGA	64.7	0	1940	195
$\begin{aligned} & 5 \text { N. \&. } 6 \text { W. OF JCT. US } 277 \text { \& US } \\ & 62 \end{aligned}$	78.2	0	1940	77
$\begin{aligned} & \text { 5 S. \& 5.6 W. OF JCT. SH } 7 \& \text { SH } \\ & 65 \\ & \hline \end{aligned}$	44	1	1940	66
1 S. \& 1 E. OF JCT. US 277 \& SH 17	23.4	1	1940	25
4 E. \& 2.2 N . OF JCT. SH 7 \& SH 65	64	0	1940	50
BETWEEN COLUMBIA \& NW 24 ${ }^{\text {th }}$	81.7	0	1940	260
6.2 N. \& 3.1 E. OF JCT. SH 65 \& SH 17	39.9	1	1940	100
```2.5 E. & .2 S. OF JCT. US 277& SH17```	49.9	1	1940	100
SHERIDAN RD \& D ST	73.8	0	1942	14994
5.9 MI. W. JCT. US 62	73	0	1943	1200

2040 Comanche County Long Range Transportation Plan

Location	Sufficiency	FOSD	Year Built	ADT Total
1. N 2.9 E OF SH 49	70	1	1945	100
3.8S\&4E OF JCT. SH65\&17	79	0	1945	75
1W SH65 \& .6S OF SH17	75.1	0	1945	100
2.2 MI.E.JCT.US277	89.9	0	1947	2000
5.9 MI.E.JCT.US277	72.7	0	1947	2000
1.3 MI.E.JCT.US277	81.2	0	1947	2000
5.1 MI E OF CITY LIMIT	68.5	0	1948	7719
5.2 MI E OF CITY LIMIT	82.4	0	1948	7709
4.5 MI N \& W MEERS	96.7	0	1949	150
6.0 MI N \& W MEERS	99.8	0	1949	100
7.2 MI N \& W MEERS	99.8	0	1949	100
9.0 MI N \& W MEERS	88.8	0	1949	100
3E\&.7S OF JCT. SH 7 \& SH 65	75.7	0	1949	346
3E\&3.7S OF JCT. SH 7 \& SH 65	80.2	0	1949	208
3E\&4.1S OF JCT. SH 7 \& SH 65	84.7	0	1949	208
0.2 MI N GORE BLVD	70.9	0	1949	9270
1. N . 9 E OF SH 49	86	0	1950	100
2S\&.7W OF JCT. SH 7 \& SH 65	65	2	1950	100
.7E of N.W. 38 ST.	85.7	0	1950	220
11 AVE SW-2 BLK N LEE	63.7	2	1950	15773
BETWEEN 63 RD \& COMPASS	68.8	2	1950	2009
5.8E OF JCT. US 277 \& SH 17	39.9	1	1950	100
10.8 MI N OF SH 36	69.9	0	1952	26600
3.5 MI. S. SH7	60.5	0	1953	990
4.2 MI. N. JCT. SH 7	71.1	0	1953	1200
3.6 MI. S. JCT. SH 7	93.9	0	1953	990
.5E \& 2.3 N OF JCT. I-44 \& SH 36	82.8	0	1953	3460
BETWEEN 21 ST \& 22 ND	89	0	1953	1200
$4 \mathrm{~N} \& .2 \mathrm{E} \mathrm{OF}$ JCT. US 277 \& 62	51.5	0	1954	50
BETWEEN 24 TH \& 25 TH	79.9	0	1954	23031
1.9 MI. E. SHERIDAN	86.3	0	1955	25200
JCT. I-44 \& US62	78.1	0	1955	12250
2 N \& 3.4 E OF JCT. SH 7 \& SH 65	51.4	0	1955	75
4 N \& 1.9 E OF JCT. SH 17 \& US 277	49.9	2	1955	100
1.0 MI. E. JCT. SH 7A	58.9	2	1955	20000
1.0 MI. E. JCT. SH 7A	64.5	2	1955	500
5 S \& 1.1 E OF JCT. US 277 \& SH 17	28.6	1	1955	100
3.2 S 3.6 E OF US 62	70	0	1957	345


Location	Sufficiency	FOSD	Year Built	ADT Total
3 S 2.1W OF JCT. SH 7 \& SH 65	85	0	1957	50
1.5 MI S INDIAHOMA	72.1	0	1958	221
1.5 MI S CACHE	81.9	0	1958	1012
11.6 MI N OF SH 36	65.3	2	1959	11600
11.4 MI N OF SH 36	80.9	0	1959	11600
3.2 MI N OF US 277	73.9	0	1959	26600
11.4 MI N OF SH 36	78.9	2	1959	11400
11.6 MI N OF SH 36	49.4	1	1959	11400
.7S\&1.5E OF JCT. US 27 7\& 17	87.6	0	1959	646
1.5E\&3.5S OF JCT. I44 \& SH 7	63.1	0	1960	300
1S\&.8W OF JCT. SH 7 \& SH 65	73	0	1960	75
7S\&2.7W OF JCT. SH 7 \& SH 65	53.6	0	1960	50
9S\&1E OF JCT. 277 \& SH 17	70.2	0	1960	100
.8S\&.7W OF JCT. SH 65 \& 17	39.9	1	1960	75
0.3 MI N LEE BLVD	61.1	0	1960	423
.5 MI S. KIOWA C/L	92.1	0	1962	1200
1.7 MI. S. KIOWA CL	97.3	0	1962	1200
0.9 MI. S. KIOWA CL	97.3	0	1962	1200
1.1 MI.E.JCT.US281B	68.2	2	1963	9900
EAST OF FLETCHER	90	2	1963	10000
T.P. BR NO 60.77	86.5	2	1963	16200
T.P. BR NO 46.71	93.6	0	1963	10000
6.4 MI. E \& N. JCT. SH7	93.8	0	1963	12400
2.5 MI. N. JCT. SH 36	93	0	1963	3300
2.5 MI. N. JCT. SH 36	93	0	1963	3300
JCT. I-44 \& SH49	91.9	0	1963	9550
JCT. I-44 \& SH49	91.9	0	1963	10300
1.0 MI. N. S.H. 36	76.7	0	1963	6900
2.0 MI. N. S.H. 36	81.2	0	1963	6900
2.7 MI. N. JCT. SH 36	80	0	1963	3300
2.7 MI. N. JCT. SH 36	80	0	1963	3300
0.2 MI. N. JCT. SH49	69.9	0	1963	19100
6.4 MI. E \& N. JCT. SH7	93.8	0	1963	11400
6.6 MI. S. CACHE	88.7	0	1963	116
4.8 MI. N. JCT. US277	99.4	0	1964	2400
4.9 MI. N. JCT. US277	99.3	0	1964	3050
4.9 MI. NE. JCT. US281B	84.7	0	1964	10450
H.E. BAILEY T.P. BR. N0.57.83	62.3	2	1964	16200


Location	Sufficiency	FOSD	Year Built	ADT Total
H.E. BAILEY T.P.BR.NO 49.51	63.5	2	1964	10000
H.E. BAILEY T.P. BR NO 46.57	53.5	2	1964	10000
4.8 MI E US62	95.7	0	1964	16200
H.E. BAILEY T.P. BR.NO.45.47	96.6	0	1964	10000
3.0 MI W SH17	89.5	0	1964	10000
H.E. BAILEY T.P. BR NO 03.43	91.8	0	1964	7700
H.E. BAILEY T.P. BR.NO.60.32	90.6	0	1964	16200
H.E. BAILEY T.P. BR.NO. 54.75	92.7	0	1964	16200
H.E. BAILEY T.P. BR NO 57.12	91.6	2	1964	16200
H.E. BAILEY T.P. BR NO 59.72	95.7	0	1964	16200
H.E. BAILEY T.P. BR NO 49.91	78.9	2	1964	10000
H.E. BAILEY T.P..BR.NO.02.35	79.9	2	1964	7700
H.E. BAILEY T.P. BR NO 53.18	52.1	2	1964	10000
H.E. BAILEY T.P. BR.NO 50.54	62.3	2	1964	10000
H.E. BAILEY T.P..BR.NO.51.61	58.3	2	1964	10000
H.E. BAILEY T.P. BR NO 45.64	81.4	2	1964	10000
H.E. BAILEY T.P. BR. NO 45.27	96.6	0	1964	10000
3.1 MI. NE. JCT. US281B	78	2	1964	4950
3.1 MI. NE. JCT. US281B	78	2	1964	4950
3.3 MI. N. JCT. SH 36	67	0	1964	3100
3.3 MI. N. JCT. SH36	67	0	1964	3500
2.2 MI. NE. JCT. US281B	66	0	1964	3500
2.2 MI. NE. JCT. US281B	65.9	0	1964	4950
4.9 MI. NE. JCT. US281B	90.6	2	1964	11050
4.1 MI. NE. JCT.US281B	75	0	1964	14600
4.1 MI. NE. JCT. US281B	75	0	1964	22100
4.7 MI. NE. JCT. US281B	80.9	0	1964	10450
4.7 MI. NE. JCT. US281B	80.9	0	1964	11050
0.8 MI. E. JCT.US281B	78.9	0	1964	7200
1.2 MI. NE. JCT. US281B	79	0	1964	7000
4.4 MI. NE. JCT. US281B	68.5	0	1964	22100
2.4 MI. NE. JCT. US281B	77.4	0	1964	9900
0.9 MI. N. JCT. US281B	89.9	0	1964	3500
0.9 MI. N. JCT. US281B	89.9	0	1964	3600
1.4 MI. NE. JCT. US281B	89.9	0	1964	3650
1.4 MI. NE. JCT. US281B	89.9	0	1964	3500
1.9 MI. NE. JCT. US281B	90	0	1964	3650
1.9 MI. NE. JCT. US281B	77	2	1964	3500


Location	Sufficiency	FOSD	Year Built	ADT Total
JCT. US62 \& US277	85.4	0	1964	8950
SH 36 \& I-44 JCT.	91	0	1964	6300
JCT. US62 \& US277	83.1	2	1964	22100
E1650006	82.9	0	1964	8907
1. N 6.2 W OF I-44-SH36	69	1	1965	100
4.5 S \& 1.5 E OF JCT. US277 \& 17	86.6	0	1965	593
2.5 E \& . 6 N OF JCT. US277 \& S 17	48	2	1965	100
1 E \& .9N OF JCT. SH7 \& SH65	71.3	0	1965	100
0.4 MI. W. JCT. SH 7A	79.2	0	1965	12720
.5W\&3.2N OF JCT. I-44\&SH36	84.4	0	1965	275
0.1 MI. N. GORE BLVD.	64.4	1	1965	610
1.5 S. OF LEE . 5 E OF 11TH	85.7	0	1965	100
1.3 S. OF LEE . 5 E. OF 11TH	85.7	0	1965	100
1.2 S. OF LEE . 5 E. OF 11TH	85.7	0	1965	100
BETWEEN COLUMBIA \& NW 25 TH	77.4	0	1965	1210
1.3 MI. W. JCT. SH 7A	52.5	1	1965	6307
1.3 MI. W. JCT. SH 7A	69.5	0	1965	6307
4N\&1.6E OF JCT. I44 \& SH36	63.2	0	1965	100
3.8 MI. E. JCT. US281B	69.6	0	1966	10000
5.0 MI. E. JCT. US281B	69.6	0	1966	10000
5.2 MI. E. JCT. US281B	69.6	0	1966	10000
9.0 MI. E. JCT. US281B	81.6	0	1966	8000
0.8 MI. W. JCT. SH65	69.6	0	1966	8000
4 N. \& 2.2 E. OF JCT. I44 \&S H36	21.5	1	1966	150
0.1 MI. N. GORE BLVD.	71.2	0	1966	1244
BETWEEN 58 TH \& 62 ND	79.2	0	1967	600
MEADOW BROOK \& 44 ST	81.9	0	1967	3050
0.2 MI. E. NW 53	76.8	0	1967	2910
4.7 MI. NE. TILLMAN C/L	97.1	0	1968	1300
4.4 MI. W. JCT. US277	96.9	0	1968	1400
4.2 MI. W. JCT. US277	83.1	0	1968	2300
6.0 MI. NE. TILLMAN C/L	89.1	0	1968	1400
3.7 MI. NE. TILLMAN C/L	83.6	0	1968	1300
4.3 MI.NE. TILLMAN CL	81.6	0	1968	1300
1.0 MI. W. JCT. US277	93.8	0	1968	2300
6.2 MI. W. JCT. US277	84.4	0	1968	1400
6.7 MI. W. JCT. US277	96.9	0	1968	1400
6.2 MI. NE. TILLMAN C/L	67	0	1968	1400


Location	Sufficiency	FOSD	Year Built	ADT Total
1. E 12.7 S OF US 62	69	1	1968	100
1. E 13.6 S OF US 62	85	0	1968	100
6.6N OF JCT. SH65\&17	87.6	0	1968	650
6.8N OF JCT. SH65\&17	86.4	0	1968	651
6. E 5.5 S OF US62-SH115	56.8	0	1969	100
6.8 MI S CACHE	96.1	0	1969	116
5.2 MI. W. SHERIDAN	68.9	0	1970	8500
1.4 MI E OF SH 115	87	0	1970	4150
0.8 MI E OF SH 115	87	0	1970	4150
1.70 MI. E. JCT.SH115	67	0	1970	8300
JCT. SH115 \& US62	97.5	0	1970	6400
3.0 MI. E. JCT.SH115	79	0	1970	8300
5.0 MI. E. JCT.SH115	97.9	0	1970	8500
4.3 MI. E. JCT.SH115	84.5	0	1970	4000
4.0 MI. E. JCT.SH115	68.9	0	1970	8500
5.2N\&3.2E OF JCT. SH65\&17	23.3	1	1970	32
3.7E\&7S OF JCT. US277\&62	76.7	0	1970	90
2.5E\&6.2S OF JCT. US277 \& 17	67.4	1	1970	100
50 N OF US 62	84.7	0	1970	10030
.3MI W 82ND STREET	86	0	1970	9890
2.0 MI. W. SHERIDAN	69.6	0	1970	12770
2W\&2.2N OF JCT. SH7\&SH65	48.8	2	1970	75
9.53 MI. E. KIOWA CL	84.3	0	1971	5700
10.22 MI. E. KIOWA CO	98	0	1971	3100
0.4 MI E US277	73.6	0	1971	9690
3.37 MI. E. KIOWA CL	69.3	0	1972	4900
4.68 MI. E. KIOWA CL	78.5	0	1972	4900
6.59 MI. E. KIOWA CL	84.2	0	1972	5700
2.72 MI. E. KIOWA CL	97	0	1972	2550
5.94 MI. E. KIOWA CL	82	2	1972	3100
3.20 MI. E. KIOWA CL	86	0	1972	2550
4S\&4.1W OF JCT. I-44\&SH36	95.3	0	1972	51
2.2E OF JCT. US277\&SH17	52	0	1972	100
0.1 MI N LEE BLVD	83.3	0	1972	4985
3S\&.4W OF JCT. SH7\&SH65	39.9	1	1972	100
1.8 MI E KIOWA C/L	95.6	0	1973	50
0.7 MI. S. CADDO CL	87.3	0	1973	3100
3S\&1.4E OF JCT. US277\&62	53.5	0	1973	100


Location	Sufficiency	FOSD	Year Built	ADT Total
4.3N\&1.5E OF JCT. US277\&17	56.9	0	1973	100
.5N OF LEE .1E ON I ST.	97	0	1973	100
1.3 MI. S. JCT.US277	84.9	0	1974	5600
3N\&2.4E OF JCT. SH7\&SH65	20.6	1	1974	25
1N\&.9E OF JCT. SH7\&SH65	83.7	0	1974	50
3.6 MI. N JCT. US277	-1	0	1974	9600
1.5S OF LEE	88.9	0	1974	100
.5W\&3.8N OF JCT. I-44\&SH36	55.5	0	1975	250
3E\&5.8N OF JCT. SH7\&SH65	81.7	0	1975	161
2.6S\&2W OF JCT. SH65\&17	60.5	0	1975	100
2.1S\&2.5E OF JCT. I44\&SH7	98.9	0	1975	289
1.4E .4N of T	83.3	0	1975	220
0.1 MI N CACHE RD)	79.8	0	1975	1420
0.2 MI N GORE BLVD)	77.2	0	1975	359
17 TH \& SHERIDAN	89.5	0	1975	260
1.6 N 3.4 E OF SH 49	45.8	1	1976	100
4. N 6.5 W OF SH 49	73.6	0	1976	392
4. N 3.5 W OF SH 49	88.7	0	1976	392
4. N 4.8 W OF SH 49	86.7	0	1976	386
4. N 5.5 W OF SH 48	86.7	0	1976	392
1N\&1.1W OF JCT. SH7\&SH65	64.7	0	1976	100
1.5S\&1E OF JCT. SH65\&17	59.4	0	1976	161
0.1 MI S ROGERS LANE	79.2	0	1976	510
15TH AND PARK	85.7	0	1976	210
2.5 MI. W. JCT. US62	73.5	0	1977	4700
6W\&1.2S OF JCT. SH7\&SH65	84	0	1977	100
2.7 MI E FAU 7601	82.4	0	1977	13970
3N\&1.5W OF JCT. US277\&SH17	43.5	0	1977	630
3.2 S 5.2 E OF US 62	88.9	0	1978	345
3.2 S .9 E OF US 62	99.9	0	1978	345
4E\&6.7N OF JCT. SH7\&SH65	24.4	1	1978	50
0.6 MI S CACHE RD.	86.8	0	1978	2840
0.3 MI N LEE BLVD	85.7	0	1978	220
BETWEEN J \& PARK ST	80.2	0	1978	550
2.1 MI E OF CITY LIMIT	86.5	0	1979	2900
3.6 MI E OF CITY LIMIT	0	1979	6100	
1.5 MI E OF CITY LIMIT	0	1979	300	
1.5 MI E CITY LIMITS	000			
		0		


Location	Sufficiency	FOSD	Year Built	ADT Total
9.6 MI N OF SH 36	69.9	0	1980	25200
2.9 MI N OF US 277	92.5	0	1980	24200
4.8N\&1W OF JCT. US277\&62	85.8	0	1980	100
9.2 S 3.6 E OF US62 SH115	99.9	0	1980	290
5S\&1.6E OF JCT. US277\&SH17	85.8	0	1980	44
52 ST \& CACHE ROAD	74.9	0	1980	27550
. 4 E US 277	90.4	0	1980	9880
. 6 E of US 277	82.3	0	1980	9690
0.4 MI E. JCT. US62	95.2	0	1981	3500
1.1 MI. E. JCT. US62	94.2	0	1981	3500
4. N . 9 W OF SH 49	84.6	0	1981	610
0.6 MI W SH 36	85.7	0	1981	151
2S\&3.6E OF JCT. I-44\&SH36	94	0	1981	281
1.8S\&3E OF JCT. SH65\&17	80.2	0	1981	118
6N\&1.7E OF JCT. SH7\&SH65	91.5	0	1981	90
6N\&3.1E OF JCT. SH7\&SH65	85.7	0	1981	103
2. E 1.9 S OF SH 17	99	0	1982	100
7W OF GERONIMO	98	0	1983	89
1S 6.4W OF JCT. SH7/SH65	85.7	0	1983	100
2.8E 3.8S OF JCT. SH65\&17	82.9	0	1983	75
5.2N 1.5E OF JCT. SH65/17	64.9	2	1983	126
6.2N\&1.5E OF JCT. SH65\&17	49.9	1	1983	100
5W\&.1S OF JCT. SH7\&SH65	85.7	0	1983	100
. 2 E of F AVE	95.6	0	1983	2630
4.4E\&3.8S OF JCT. SH17\&65	63.1	1	1983	100
0.8 MI E OF SH 115	97	0	1984	4000
4.3 MI E JCT. SH 115	98	0	1984	4250
1.4 MI E OF SH 115	98	0	1984	4150
. 2 N OF LEE ON 42ND	85.7	0	1984	100
2.5N OF LEE . 2 ON 29TH	53	1	1984	100
0.1 MI E GOODYEAR BLVD	89.8	0	1984	5410
0.7 MI S MEERS	98.6	0	1985	320
9.2 S 1.8 E OF US62 SH115	86.7	0	1985	290
1.5W OF JCT. US277 \& 62	87.3	0	1985	906
9.2 S 1.5 E OF US62 SH115	99.8	0	1985	290
0.7 MI E GOODYEAR BLVD	94.1	0	1985	5397
0.2 MI E OF 52ND ST	73.1	2	1985	6350
5.9 MI S INDIAHOMA	88.7	0	1986	62


Location	Sufficiency	FOSD	Year Built	ADT Total
1.3 MI S FAXON	100	0	1986	136
2S\&3.7E OF JCT. I-44\&SH36	87.6	0	1986	281
4. N. . 2 E OF SH 7	40	1	1986	50
BETWEEN $23{ }^{\text {RD }}$ \& SHERIDAN	96.9	0	1986	600
BETWEEN 23RD \& SHERIDAN	96.9	0	1986	700
1.4 MI. E. OF US 62	93.8	0	1986	1883
. 8 W. \& 4 N. OF JCT. US277 \& SH17	61.2	0	1986	100
1.1 MI. E. JCT. US281B	99.9	0	1987	9050
```2.5 E. & .3 N. OF JCT. US277 & SH17```	96	0	1987	100
3.2 S. \& 1 E. OF JCT. SH65 \& 17	99	0	1987	161
0.1 W OF 38 ON ROGERS LN	79.6	0	1988	19700
. 1 E OF 38TH ON ROGERS	77.4	0	1988	19700
4.2 S 4.5 W OFUS62-SH115	45.8	1	1988	100
4. N 5. W OF I-44-SH36	89.8	0	1988	100
3.2 S 2.3 E OF US62	99.9	0	1988	345
10.3 W 4.2 S OF I-44	74.7	0	1988	100
5.2 S 5.3 E OF US62-SH115	100	0	1988	100
2. N 6.2 W OF I-44-SH36	100	0	1988	100
6.0 N . 8 W CHATTANOOGA	85.7	0	1988	259
3.4E\&7S OF JCT. US277	76.7	0	1988	90
1\&.6E OF JCT. US62\&277	94	0	1988	50
. 1 S OF ROGERS LANE	73.2	0	1988	3116
3.0 MI N US 281 BUS	89.1	0	1989	23800
4.4 MI N GERONIMO	97	0	1989	100
5. N 5.8 W OF I-44-SH36	67.1	0	1989	100
6. W 7.5 S OF US62SH115	100	0	1989	100
5S\&2.6E OF JCT. US277\&SH17	84	0	1989	44
3S\&1.8E OF JCT. SH7\&I-44	85.7	0	1990	100
6N\&2.5E OF JCT. SH7\&SH65	100	0	1990	90
0.2 MI W OF 67 ST	84.7	0	1990	160
10.4 W 4.8 S OF I-44	44.1	1	1990	100
300' E OF CENTRAL DR.	76.2	0	1991	23800
AT SHERIDAN ON ROGERS	86	2	1991	23800
2. W 2.8 N OF US62 US277	100	0	1991	100
0.7 MI E OF W 38 ST	92.9	0	1991	365
5.6 S 9. W OF US62-SH115	99.3	0	1992	100
5.5 MI S 3.3 W CACHE	99.9	0	1992	100
5.2S 2.8E OF US62/SH115	85.7	0	1992	100

Location	Sufficiency	FOSD	Year Built	ADT Total
2. N 2.2 E OF SH 7	100	0	1992	100
2.72 MI. E. KIOWA CL	97	0	1993	2450
3.20 MI. E. KIOWA CL	86.4	0	1993	2450
1.2 S 4.4 W OF US 62	100	0	1993	100
3.8 N 9.4 W US62 SH115	86	0	1993	25
2.8E\&1N OF JCT. US277\&SH17	83.3	0	1993	100
300' N WILLOW CREEK DR.	81.7	0	1993	12020
0.3 MI N GORE BLVD	81.7	0	1993	12030
67 TH N LEE	71.2	0	1993	7520
1. N 6.3 W OF I-44 US62	45.8	1	1993	100
9.3 W 2.8 OF I-44	100	0	1994	100
2S 3.3E OF JCT. I-44\&SH36	85.6	0	1994	281
1N\&4.6E OF JCT. I-44 \& SH7	86.7	0	1994	100
.2W OF SHERIDAN ON EUCLID	73.7	2	1994	6120
1.5 W JCT. US62, CAD/COM	86.9	0	1995	77
3S \& 2.2W JCT. US62/SH115	75.8	0	1995	50
3S \& 2W JCT. US62/SH115	86.8	0	1995	50
3S \& 1.4W JCT. US62/SH115	75.8	0	1995	50
.4E \& 1.8 N JCT. SH49/SH58	100	0	1995	50
1. N 8.5 W OF I44 \& SH36	100	0	1995	100
1. N 5.7 W OF I44 \& SH36	87.1	0	1995	100
9.7M W\&1.9 M S JCT. 281 \& SH36	100	0	1995	100
1N\&2.1E OF JCT. I44 \& SH36	100	0	1995	74
3.3S, 1N JCT. US 277 \& US 62	61.2	0	1995	100
.3S GORE, .2W OF 11 ST	85.3	0	1995	4010
.3N CACHE RD 0N FLOWER MD	89.7	0	1995	2610
0.5E OF 82ND ON ROGERS LN	82.1	0	1996	5000
6.W 4.5 S OF US62 \& SH115	99.9	0	1996	100
5.0N\&3.8W JCT. SH49 /SH58	100	0	1996	100
6.2S 0.6 W OF US62 \& SH115	58.7	1	1996	100
3. S 11. W OF I-44	86.8	0	1996	100
5.W 3.3 S OF US62 \& SH115	85.1	0	1996	50
8.5 S. 3.0 W. JCT. US62 \& SH115	73.7	0	1996	100
4N\&2.6E OF JCT. SH7 \& SH65	100	0	1996	100
14.2 S .3E JCT. US62 \& SH115	86	0	1996	100
3. E 6.1 S OF US62 \& SH115	86.8	0	1996	100
.3N CACHE RD ON FLOWER MD	87.4	0	1996	2620
1.2 MI N MEERS	99.5	1997	250	

Location	Sufficiency	FOSD	Year Built	ADT Total
1.9 MI. N. \& W. MEERS	99.6	0	1997	190
5.94 MI. E. KIOWA C/L	94	2	1997	2850
10.22 MI. E. KIOWA CO	98	0	1997	2850
1.6 MI. E. JCT. SH 65	100	0	1997	4000
1 S. 6. W. OF JCT. I44 \& SH 36	100	0	1997	100
3.2 S. 5.1 W. OF US 62 \& SH 115	100	0	1997	100
1. N. .2 E. OF SH 49 \& SH 58	75.8	0	1997	100
2.2 S. 10.2 W. OF US62 \& SH 115	85.2	0	1997	50
3. N. 8.6 W. OF I44 \& SH 36	93.1	0	1997	100
3. N. 7. W. OF I44 \& SH 36	95.6	0	1997	100
1.5 E. \& 1.2 N. OF JCT. I44 \& SH 36	99	0	1997	150
4 E. \&.1 S. OF JCT. SH65 \& SH17	100	0	1997	100
1 N. \& 1.5 E. OF JCT. I44 \& SH36	99	0	1997	150
.8 N. .4 E. OF SH 49	86.8	0	1997	100
0.1 MI. S. OF LEE BLVD.	70.4	0	1997	4620
0.4 MI. E. OF W. 38 ST	95.9	0	1997	287
7.5 MI. S. 3.3 W. CACHE	100	0	1998	100
.5 E. 1.5 S. OF FAXON	82.5	0	1998	79
.5 E. 2.8 S . OF JCT. SH 65 \& SH 17	100	0	1998	25
2 E. \& 2.4 N. OF JCT. S H 7 \& SH 65	91.6	0	1998	50
1E 1.8S OF JCT. SH 65 \& SH 17	83	0	1998	25
1.4E 3S OF JCT. SH 65 \& SH 17	100	0	1998	50
7N\&3E OF JCT. SH 65 \& SH 17	95.1	0	1998	100
7.5 MI N \& 12.3 MI N JCT.	68	0	1998	50
7. N 12. W OF SH 49	82.6	0	1998	24
1.9 E \& 2.3 S JCT. US62/SH	81.1	0	1998	100
8 E 4. N OF I-44-SH36	96	0	1998	125
5N \& 6.5W SH-49/SH-58	61.8	1	1998	100
2N 1.2E I-44/SH36	97	0	1999	100
4.4E OF JCT. US277\&SH17	77.8	0	1999	100
3.9E OF JCT. US277\&SH17	85	0	1999	100
4S 3.8W OF JCT. I-44\&SH36	64	0	1999	75
3N .3W OF JCT. US277/SH17	74.7	0	1999	100
4S 7.9W OF JCT. SH7/SH65	74.7	0	1999	100
1S\&1.6E OF JCT. SH7\&SH65	100	0	1999	100
2. N 8.6 W OF I-44-SH36	89	0	1999	100
1.8 MI. N. JCT. SH49	0	2000	5700	
4.6 S. 1W. JCT. US277 \& US62	09.3	2000	200	

Location	Sufficiency	FOSD	Year Built	ADT Total
6S\&5.8W OF JCT. SH7\&SH65	96	0	2000	156
0.3M N. OR GORE BLVD.	84.7	0	2000	4820
.8N CACHE RD.	94.3	0	2000	5220
13.6N 11W JCT. US62/SH115	87.2	0	2001	50
5S 6.4E JCT. US62 / SH115	75.8	0	2001	100
2S 7.7N JCT. I-44 / S.H.36	85	0	2001	100
2S 14N JCT. I-44 / S.H. 36	86.8	0	2001	100
.7 S 9.3 W OF I-44	95.5	0	2001	100
5.3N 0F INDIAHOMA	99.9	0	2001	100
3.2 S 10.2 W US62 SH115	99.3	0	2001	50
3.2 S 10.1 W US62 SH115	100	0	2001	50
1.5W 1N JCT. I-44/S.H. 49	69	1	2001	50
3.1S 1W JCT. US277 / US62	100	0	2001	200
4E 2.8N JCT. US277/HE. BAILEY	73	0	2001	200
5 N. .2 W. JCT. SH7 \& SH65	96	0	2001	100
3. E 5.3 S. OF US62 \& SH115	100	0	2001	100
1.6 MI. N. JCT.US277	85.2	0	2002	3700
2 W. 7.4 S. OF CACHE	100	0	2002	50
3 N. 2.4 E. SH 7 \& SH65	89.1	0	2002	167
1 N. .8 E. JCT. SH58 \& SH49	100	0	2003	100
.2 W. 4 S. OF JCT. US277 \& US62	99.9	0	2003	100
6 E. 2.2 N. .7E OF FLETCHER	100	0	2003	100
2. S. 1.1 E .0F JCT. US277 \& SH17	88	0	2003	100
NE OF LEE BLVD. TO GORE	85.2	0	2003	2025
7 W. OF I-44	91	0	2004	4000
HIGHWAY 62 RAMP	96.6	0	2004	5000
4 S .1.6 E. OF CACHE	100	0	2004	100
4 S. 2.4 E. OF CACHE	100	0	2004	100
1 W .7.2 S. OF CACHE	99.9	0	2004	100
1.4 S 3.7 E. JCT. I-44 \& SH 36	100	0	2004	50
3.5 E. STERLLNG, 1 S. OK51	100	0	2004	100
2 W. 6.2 N. OF INDIAHOMA	73	1	2004	100
1 N. 3.1 E. OF JCT. I44 \& SH3	100	0	2005	66
.3 S. OF CACHE RD.	80.4	0	2005	5420
2 E. 53RD ST.	08	2005	220	
1.2 W. OF CACHE	0	2006	1187	
1.2 W. .2 S. OF CACHE	0	2006	1187	
7 N. .4 E. OF CLOUDY	2006	118		

Location	Sufficiency	FOSD	Year Built	ADT Total
2W 7.9S OF JCT. SH7/SH65	97	0	2006	75
5E .5N OF JCT. SH17/SH65	100	0	2006	100
1S 3E OF JCT. SH17/SH65	99	0	2006	120
1.3N BETHEL,1W STEPHENS CL	99	0	2006	168
3E 1.7N OF S.H. 7/S.H. 65	99	0	2006	168
0.1N OF U.S. 62	83.7	0	2007	26600
4.0S,0.9E OF U.S.277/SH17	100	0	2007	100
2N 1.8W S.H. 7/S.H. 65	97	0	2007	100
1S 5.2W OF S.H. 7/S.H. 65	93.1	0	2007	100
6S 2.6W JCT. S.H. 7 S.H.65	70.6	0	2007	156
12.4 MILES N. OF SH-36	97.9	0	2008	11400
12.4 MILES N. OF SH-36	97.9	0	2008	12400
5N 2.9 JCT. SH7 / SH65	71.2	0	2008	161
3E 4.9S OF SH7 \& SH65	84.7	0	2008	161
1.8S .2W OF JCT. SH 65/17	94.9	0	2008	75
1E 3.9S JCT. SH7 / SH65	88.5	0	2008	75
1.6E OF JCT. S.H. 65	100	0	2009	3950
6W \& 5.5S OF 277/36	96	0	2009	50
2N OF US62, 2.5W FT. SILL	100	0	2009	100
0.8S, 4.7E OF I-44/SH-36	98.9	0	2009	250
1W .2S OF PUMPKIN CTR	72.9	0	2009	100
2N, 3.3E OF JCT. I-44.\&.SH.36	92.1	0	2009	75
5W, .1N HWY 7 AND HWY 65	100	0	2009	200
1E .4N OF S.H. 65/S.H. 17	99	0	2009	125
1E .3N OF S.H. 65/S.H. 17	99	0	2009	125
1E .5N OF S.H. 65/S.H. 17	99	0	2009	125
2.1S .5W JCT. US 62/SH 115	100	0	2010	150
1S, 5.9W OF GER0NIMO	94.6	0	2010	150
3.5N 0F SH7/SH65 JCT.	89.7	0	2010	100
6.2N 4W JCT. SH-17/SH 65	100	0	2010	100
1500' S OF RR ST. \& LEE	99.9	0	2010	1585
4W 4.1N OF JCT. 277/17	94.1	0	2011	100
2S 0F I-44/S.H. 7	99.9	0	2011	360
5.9 E OF JCT. SH 65	96	0	2012	1300
2.1S OF JCT. SH 17	100	0	2012	100
4.7E 2N OF US 277/SH 17	0	2013	390	
4N 0F CACHE ROAD	0	2012	1200	
.17N 0F MEERS	9900			

2040 Comanche County Long Range Transportation Plan

Location	Sufficiency	FOSD	Year Built	ADT Total
1.2 E JCT. SH 65	96	0	2013	1300
1.6 E JCT. SH 65	96	0	2013	1300
2S 2.5E OF INDIAHOMA	98.3	0	2013	200
6.2 E 1N OF JCT. US277/SH17	97	0	2013	100
.6W 0F JCT. SH 65	94.6	0	2014	1800
JCT. US 62 \& I-44	91.2	0	2014	8950
2.2S 2.3E OF US 62/SH 115	100	0	2014	76
3S 2.7E OF JCT. SH7/SH65	100	0	2014	50
3S 2.7E OF JCT. SH7/SH65	96.8	0	2014	50
1S .5W OF I-44/SH36	100	0	2016	100
3S .5W OF SH7/SH65	99	0	2016	100
1S .4E OF JCT. I-44/SH 7	99.9	0	2017	250
3E 4.4N SH7/SH65	96	0	2017	161
2S 5.2W OF I-44 / SH 36	97	0	2017	59
3E 4.5N OF JCT. SH7/SH65	96	0	2017	161
1S .6W OF JCT. I-44/SH36	100	0	2017	66
5.4E 1N of JCT. US277/SH17	85.3	0	2018	100
2E 1.9S of US62/SH115	99	0	2018	181

Source: ODOT

Appendix 2.21: Comanche County Off System Bridges

Location	Sufficiency	FOSD	Year Built	ADT Total	ADT Year
2.2 MI.NE.JCT.US281B	66	0	1964	3500	2016
2.2 MI.NE.JCT.US281B	65.9	0	1964	4950	2016
4.9 MI.NE.JCT.US281B	90.6	2	1964	11050	2016
4.1MI.NE.JCT.US281B	75	0	1964	14600	2016
4.1 MI. NE. JCT. US281B	75	0	1964	22100	2016
4.7 MI. NE. JCT. US281B	80.9	0	1964	10450	2016
4.7 MI. NE. JCT. US281B	80.9	0	1964	11050	2016
0.8 MI. E. JCT. US281B	78.9	0	1964	7200	2016
1.2 MI. NE. JCT. US281B	79	0	1964	7000	2016
4.4 MI. NE. JCT. US281B	68.5	0	1964	22100	2016
2.4 MI. NE. JCT. US281B	77.4	0	1964	9900	2016
0.9 MI. N. JCT. US281B	89.9	0	1964	3500	2016
0.9 MI. N. JCT. US281B	89.9	0	1964	3600	2016
1.4 MI.NE. JCT. US281B	89.9	0	1964	3650	2016
1.4 MI. NE. JCT. US281B	89.9	0	1964	3500	2016
1.9 MI. NE. JCT. US281B	90	0	1964	3650	2016
1.9 MI. NE. JCT. US281B	77	2	1964	3500	2016
JCT. US62 \& US277	85.4	0	1964	8950	2016
SH 36 \& I-44 JCT.	91	0	1964	6300	2016
JCT. US62 \& US277	83.1	2	1964	22100	2016
E1650006	82.9	0	1964	8907	2016
1. N. 6.2 W. OF I44 SH 36	69	1	1965	100	2016
4.5S\&1.5E OF JCT. US277\&17	86.6	0	1965	593	2016
2.5E\&.6N OF JCT. US277\&S17	48	2	1965	100	2016
1E\&.9N OF JCT. SH7\&SH65	71.3	0	1965	100	2016
0.4 MI. W. JCT.SH 7A	79.2	0	1965	12720	2016
.5W\&3.2N OF JCT. I-44\&SH36	84.4	0	1965	275	2016
0.1 MI N GORE BLVD	64.4	1	1965	610	2016
1.5S OF LEE. .5E OF 11TH	85.7	0	1965	100	2016
1.3S OF LEE .5E OF 11TH	85.7	0	1965	100	2016
1.2S OF LEE .5E OF 11TH	85.7	0	1965	100	2016
BETWEEN COLUMBIA \& NW		0	1966	10000	2016
25 TH	77.4	0	1965	1210	2016
1.3 MI. W. JCT.SH 7A	52.5	1	1965	6307	2016
1.3 MI. W. JCT.SH 7A	69.5	0	1965	6307	2016
4N\&1.6E OF JCT. I-44\&SH36	63.2	0	1965	100	2016
3.8 MI.E.JCT.US281B	69.6	0			

Location	Sufficiency	FOSD	Year Built	ADT Total	ADT Year
5.0 MI. E. JCT. US281B	69.6	0	1966	10000	2016
5.2 MI. E. JCT. US281B	69.6	0	1966	10000	2016
9.0 MI. E. JCT. US281B	81.6	0	1966	8000	2016
0.8 MI. W. JCT. SH65	69.6	0	1966	8000	2016
4N\&2.2E OF JCT. I-44 \&S H36	21.5	1	1966	150	2016
0.1 MI. N. GORE BLVD	71.2	0	1966	1244	2016
BETWEEN 58 TH \& 62 ND	79.2	0	1967	600	2016
MEADOW BROOK \& 44 ST	81.9	0	1967	3050	2016
0.2 MI. E. NW 53	76.8	0	1967	2910	2016
4.7 MI. NE. TILLMAN CL	97.1	0	1968	1300	2016
4.4 MI. W. JCT. US277	96.9	0	1968	1400	2016
4.2 MI. W. JCT. US277	83.1	0	1968	2300	2016
6.0 MI. NE. TILLMAN C/L	89.1	0	1968	1400	2016
3.7 MI. NE. TILLMAN C/L	83.6	0	1968	1300	2016
4.3 MI. NE. TILLMAN C/L	81.6	0	1968	1300	2016
1.0 MI. W. JCT. US277	93.8	0	1968	2300	2016
6.2 MI. W. JCT. US277	84.4	0	1968	1400	2016
6.7 MI. W. JCT. US277	96.9	0	1968	1400	2016
6.2 MI. NE. TILLMAN C/L	67	0	1968	1400	2016
1. E. 12.7 S. OF US 62	69	1	1968	100	2016
1. E. 13.6 S. OF US 62	85	0	1968	100	2016
6.6 N. OF JCT. SH 65 \& SH17	87.6	0	1968	650	2016
6.8 N. OF JCT. SH 65 \& SH17	86.4	0	1968	651	2016
6. E. 5.5 S. OF US62 \& SH115	56.8	0	1969	100	2016
6.8 MI. S. CACHE	96.1	0	1969	116	2016
5.2 MI. W. SHERIDAN	68.9	0	1970	8500	2016
1.4 MI. E. OF SH 115	87	0	1970	4150	2016
0.8 MI. E. OF SH 115	87	0	1970	4150	2016
1.70 MI .E. JCT. SH115	67	0	1970	8300	2016
JCT. SH115 \& US62	97.5	0	1970	6400	2016
3.0 MI. E. JCT. SH115	79	0	1970	8300	2016
5.0 MI. E. JCT. SH115	97.9	0	1970	8500	2016
4.3 MI. E. JCT. SH115	84.5	0	1970	4000	2016
4.0 MI. E. JCT. SH115	68.9	0	1970	8500	2016
5.2 N. \& 3.2 E. OF JCT. SH65 \&	23.3	1	1970	32	2016
SH17		0	1970	90	2016
3.7 E. \& 7 S. OF JCT. US277 \&					
US62		0.7	0		
		0	0		

Location	Sufficiency	FOSD	Year Built	ADT Total	ADT Year
2.5E\&6.2S OF JCT. US277\&17	67.4	1	1970	100	2016
50' N OF US 62	84.7	0	1970	10030	2016
.3MI W 82ND STREET	86	0	1970	9890	2016
2.0 MI. W. SHERIDAN	69.6	0	1970	12770	2016
2W\&2.2N OF JCT. SH7\&SH65	48.8	2	1970	75	2016
9.53 MI. E. KIOWA CL	84.3	0	1971	5700	2016
10.22 MI. E. KIOWA CO	98	0	1971	3100	2016
0.4 MI E US277	73.6	0	1971	9690	2016
3.37 MI. E. KIOWA CL	69.3	0	1972	4900	2016
4.68 MI. E. KIOWA CL	78.5	0	1972	4900	2016
6.59 MI. E. KIOWA CL	84.2	0	1972	5700	2016
2.72 MI. E. KIOWA CL	97	0	1972	2550	2016
5.94 MI. E. KIOWA CL	82	2	1972	3100	2016
3.20 MI. E. KIOWA CL	86	0	1972	2550	2016
4S\&4.1W OF JCT. I-44\&SH36	95.3	0	1972	51	2016
2.2E OF JCT. US277\&SH17	52	0	1972	100	2016
0.1 MI N LEE BLVD	83.3	0	1972	4985	2016
3S\&.4W OF JCT. SH7\&SH65	39.9	1	1972	100	2016
1.8 MI E KIOWA C/L	95.6	0	1973	50	2016
0.7 MI. S. CADDO CL	87.3	0	1973	3100	2016
3S\&1.4E OF JCT. US277\&62	53.5	0	1973	100	2016
4.3N\&1.5E OF JCT. US277\&17	56.9	0	1973	100	2016
.5N OF LEE .1E ON I ST.	97	0	1973	100	2016
1.3 MI. S. JCT.US277	84.9	0	1974	5600	2016
3N\&2.4E OF JCT. SH7\&SH65	20.6	1	1974	25	2016
1N\&.9E OF JCT. SH7\&SH65	83.7	0	1974	50	2016
3.6 MI. N JCT. US277	-1	0	1974	9600	2016
1.5S OF LEE	88.9	0	1974	100	2016
.5W\&3.8N OF JCT. I-44\&SH36	55.5	0	1975	250	2016
3E\&5.8N OF JCT. SH7\&SH65	81.7	0	1975	161	2016
2.6S\&2W OF JCT. SH65\&17	60.5	0	1975	100	2016
2.1S\&2.5E OF JCT. I44\&SH7	98.9	0	1975	289	2012
1.4E .4N of T	83.3	0	1975	220	2016
0.1 MI N CACHE RD)	79.8	0	1975	1420	2016
0.2 MI N GORE BLVD)	77.2	0	1975	359	2016
17 TH \& SHERIDAN	89.5	0	1975	260	2016
1.6 N 3.4 E OF SH 49	73.6	0	1976	392	2016
4. N 6.5 W OF SH 49					

Location	Sufficiency	FOSD	Year Built	$\begin{aligned} & \text { ADT } \\ & \text { Total } \end{aligned}$	$\begin{aligned} & \text { ADT } \\ & \text { Year } \end{aligned}$
4. N 3.5 W OF SH 49	88.7	0	1976	392	2016
4. N 4.8 W OF SH 49	86.7	0	1976	386	2016
4. N 5.5 W OF SH 48	86.7	0	1976	392	2016
1N\&1.1W OF JCT. SH7\&SH65	64.7	0	1976	100	2016
1.5S\&1E OF JCT. SH65\&17	59.4	0	1976	161	2016
0.1 MI S ROGERS LANE	79.2	0	1976	510	2016
15TH AND PARK	85.7	0	1976	210	2016
2.5 MI. W. JCT. US62	73.5	0	1977	4700	2016
\qquad SH65	84	0	1977	100	2016
2.7 MI. E. FAU 7601	82.4	0	1977	13970	2016
3 N. \& 1.5 W. OF JCT. US277 \& SH17	43.5	0	1977	630	2016
3.2 S. 5.2 E. OF US 62	88.9	0	1978	345	2016
3.2 S. . 9 E. OF US 62	99.9	0	1978	345	2016
$\begin{aligned} & \text { 4 E. \& 6.7 N. OF JCT. SH7 \& } \\ & \text { SH65 } \end{aligned}$	24.4	1	1978	50	2016
0.6 MI. S. CACHE RD.	86.8	0	1978	2840	2016
0.3 MI. N. LEE BLVD	85.7	0	1978	220	2016
BETWEEN J \& PARK ST	80.2	0	1978	550	2016
2.1 MI E OF CITY LIMIT	86.5	0	1979	2900	2016
3.6 MI E OF CITY LIMIT	82.1	0	1979	6100	2016
1.5 MI E OF CITY LIMIT	99.1	0	1979	300	2016
1.5 MI E CITY LIMITS	98.9	0	1979	300	2016
9.6 MI N OF SH 36	69.9	0	1980	25200	2016
2.9 MI N OF US 277	92.5	0	1980	24200	2016
4.8N\&1W OF JCT. US277\&62	85.8	0	1980	100	2016
9.2 S 3.6 E OF US62 SH115	99.9	0	1980	290	2016
5S\&1.6E OF JCT. US277\&SH17	85.8	0	1980	44	2016
52 ST \& CACHE ROAD	74.9	0	1980	27550	2016
. 4 E US 277	90.4	0	1980	9880	2016
. 6 E of US 277	82.3	0	1980	9690	2016
0.4 MI. E. JCT. US62	95.2	0	1981	3500	2016
1.1 MI. E. JCT. US62	94.2	0	1981	3500	2016
4. N . 9 W. OF SH 49	84.6	0	1981	610	2016
0.6 MI. W. SH 36	85.7	0	1981	151	2016
2 S. \& 3.6 E. OF JCT. I44 \& SH36	94	0	1981	281	2016

Location	Sufficiency	FOSD	Year Built	ADT Total	ADT Year
1.8S\&3E OF JCT. SH65\&17	80.2	0	1981	118	2016
6N\&1.7E OF JCT. SH7\&SH65	91.5	0	1981	90	2016
6N\&3.1E OF JCT. SH7\&SH65	85.7	0	1981	103	2016
2. E 1.9 S OF SH 17	99	0	1982	100	2016
7W OF GERONIMO	98	0	1983	89	2016
1S 6.4W OF JCT. SH7/SH65	85.7	0	1983	100	2016
2.8E 3.8S OF JCT. SH65\&17	82.9	0	1983	75	2016
5.2N 1.5E OF JCT. SH65/17	64.9	2	1983	126	2016
6.2N\&1.5E OF JCT. SH65\&17	49.9	1	1983	100	2016
5W\&.1S OF JCT. SH7\&SH65	85.7	0	1983	100	2016
.2E of F AVE	95.6	0	1983	2630	2016
4.4E\&3.8S OF JCT. SH17\&65	63.1	1	1983	100	2016
0.8 MI E OF SH 115	97	0	1984	4000	2016
4.3 MI E JCT. SH 115	98	0	1984	4250	2016
1.4 MI E OF SH 115	98	0	1984	4150	2016
2N OF LEE ON 42ND	85.7	0	1984	100	2016
2.5N OF LEE .2 ON 29TH	53	1	1984	100	2016
0.1 MI E GOODYEAR BLVD	89.8	0	1984	5410	2016
0.7 MI S MEERS	98.6	0	1985	320	2016
9.2 S 1.8 E OF US62 SH115	86.7	0	1985	290	2016
1.5W OF JCT. US277\&62	87.3	0	1985	906	2016
9.2 S 1.5 E OF US62 SH115	99.8	0	1985	290	2016
0.7 MI E GOODYEAR BLVD	94.1	0	1985	5397	2016
0.2 MI E OF 52ND ST	73.1	2	1985	6350	2016
5.9 MI S INDIAHOMA	88.7	0	1986	62	2016
1.3 MI S FAXON	100	0	1986	136	2016
2S\&3.7E OF JCT. I-44\&SH36	87.6	0	1986	281	2016
4. N. .2 E OF SH 7	40	1	1986	50	2016
BETWEEN 23RD \& SHERIDAN	96.9	0	1986	600	2016
BETWEEN 23RD \& SHERIDAN	96.9	0	1986	700	2016
1.4 MI. E. OF US 62	93.8	0	1986	1883	2016
8 W. \&4 N. OF JCT. US277 \&					
SH17	61.2	0	1986	100	2016
1.1 MI. E. JCT. US281B	99.9	0	1987	9050	2016
2.5 E. \& .3 N. OF JCT. US277 \&	96	0	1987	100	2016
SH17		0	1987	161	2016
 SH17	99				

Location	Sufficiency	FOSD	Year Built	ADT Total	ADT Year
0.1 W. OF 38th ON ROGERS LN	79.6	0	1988	19700	2016
.1 E OF 38TH ON ROGERS	77.4	0	1988	19700	2016
4.2 S 4.5 W OFUS62-SH115	45.8	1	1988	100	2016
4. N 5. W OF I-44-SH36	89.8	0	1988	100	2016
3.2 S 2.3 E OF US62	99.9	0	1988	345	2016
10.3 W 4.2 S OF I-44	74.7	0	1988	100	2016
5.2 S 5.3 E OF US62-SH115	100	0	1988	100	2016
2. N 6.2 W OF I-44-SH36	100	0	1988	100	2016
6.0 N .8 W CHATTANOOGA	85.7	0	1988	259	2016
3.4E\&7S OF JCT. US277	76.7	0	1988	90	2016
1\&.6E OF JCT. US62\&277	94	0	1988	50	2016
.1 S OF ROGERS LANE	73.2	0	1988	3116	2016
3.0 MI N US 281 BUS	89.1	0	1989	23800	2016
4.4 MI N GERONIMO	97	0	1989	100	2016
5. N 5.8 W OF I-44-SH36	67.1	0	1989	100	2016
6. W 7.5 S OF US62SH115	100	0	1989	100	2016
5S\&2.6E OF JCT.					
US277\&SH17	84	0	1989	44	2016
3S\&1.8E OF JCT. SH7\&I-44	85.7	0	1990	100	2016
6N\&2.5E OF JCT. SH7\&SH65	100	0	1990	90	2016
0.2 MI W OF 67 ST	84.7	0	1990	160	2016
10.4 W 4.8 S OF I-44	44.1	1	1990	100	2016
300' E OF CENTRAL DR.	76.2	0	1991	23800	2016
AT SHERIDAN ON ROGERS	86	2	1991	23800	2016
2. W 2.8 N OF US62 US277	100	0	1991	100	2016
0.7 MI E OF W 38 ST	92.9	0	1991	365	2016
5.6 S 9. W OF US62-SH115	99.3	0	1992	100	2016
5.5 MI S 3.3 W CACHE	99.9	0	1992	100	2016
5.2S 2.8E OF US62/SH115	85.7	0	1992	100	2016
2. N 2.2 E OF SH 7	100	0	1992	100	2016
2.72 MI. E. KIOWA CL	97	0	1993	2450	2016
3.20 MI. E. KIOWA CL	86.4	0	1993	2450	2016
1.2 S 4.4 W OF US 62	100	0	1993	100	2016
3.8 N 9.4 W US62 SH115	86	0	1993	25	2016
2.8E\&1N OF JCT.	83.3	0	1993	100	2016
US277\&SH17	0	1993	12020	2016	
300' N WILLOW CREEK DR.	81.7				

Location	Sufficiency	FOSD	Year Built	ADT Total	$\begin{aligned} & \text { ADT } \\ & \text { Year } \end{aligned}$
0.3 MI N GORE BLVD	81.7	0	1993	12030	2016
67 TH N LEE	71.2	0	1993	7520	2016
1. N 6.3 W OF I-44 US62	45.8	1	1993	100	2016
9.3 W 2.8 OF I-44	100	0	1994	100	2016
2S 3.3E OF JCT. I-44\&SH36	85.6	0	1994	281	2016
1N\&4.6E OF JCT. I-44 \& SH7	86.7	0	1994	100	2016
.2W OF SHERIDAN ON EUCLID	73.7	2	1994	6120	2016
1.5 W JCT. US62, CAD/COM	86.9	0	1995	77	2016
3S \& 2.2W JCT. US62/SH115	75.8	0	1995	50	2016
3S \& 2W JCT. US62/SH115	86.8	0	1995	50	2016
3S \& 1.4W JCT. US62/SH115	75.8	0	1995	50	2016
.4E \& 1.8 N JCT. SH49/SH58	100	0	1995	50	2016
1. N 8.5 W OF I-44-SH36	100	0	1995	100	2016
1. N. 5.7 W. OF I44 \& SH36	87.1	0	1995	100	2016
9.7 MI. W. \& 1.9 MI. S. JCT. US 281 \& SH36	100	0	1995	100	2016
1 N. \& 2.1 E. OF JCT. I44 \& SH36	100	0	1995	74	2016
3.3S, 1N JCT. US 277 \& 62	61.2	0	1995	100	2016
. 3 S GORE, . 2 W OF 11 ST	85.3	0	1995	4010	2016
.3N CACHE RD ON FLOWER MD	89.7	0	1995	2610	2016
0.5E OF 82ND ON ROGERS LN	82.1	0	1996	5000	2016
6.W 4.5 S OF US62 \& SH115	99.9	0	1996	100	2016
5.0N\&3.8W JCT. SH49 /SH58	100	0	1996	100	2016
6.2S 0.6 W OF US62 \& SH115	58.7	1	1996	100	2016
3. S 11. W OF I44	86.8	0	1996	100	2016
5.W 3.3 S OF US62 \& SH115	85.1	0	1996	50	2016
$\begin{aligned} & \text { 8.5 S. 3.0 W. JCT. US62 \& } \\ & \text { SH115 } \end{aligned}$	73.7	0	1996	100	2016
4N\&2.6E OF JCT. SH7\&SH65	100	0	1996	100	2016
14.2 S .3E JCT. US62 \& SH115	86	0	1996	100	2016
3. E 6.1 S OF US62 \& SH115	86.8	0	1996	100	2016
.3N CACHE RD ON FLOWER MD	87.4	0	1996	2620	2016
1.2 MI. N. MEERS	99.5	0	1997	250	2016
1.9 MI. N. \& W. MEERS	99.6	0	1997	190	2016

Location	Sufficiency	FOSD	Year Built	$\begin{aligned} & \text { ADT } \\ & \text { Total } \end{aligned}$	$\begin{aligned} & \text { ADT } \\ & \text { Year } \end{aligned}$
5.94 MI. E. KIOWA C/L	94	2	1997	2850	2016
10.22 MI. E. KIOWA CO	98	0	1997	2850	2016
1.6 MI. E. JCT. SH65	100	0	1997	4000	2016
1. S. 6. W. OF JCT. I44 \& SH36	100	0	1997	100	2016
$\begin{aligned} & \text { 3.2 S. } 5.1 \text { W. OF US } 62 \text { \& } \\ & \text { SH115 } \end{aligned}$	100	0	1997	100	2016
1. N. . 2 E. OF SH 49 \& SH58	75.8	0	1997	100	2016
$\begin{aligned} & \text { 2.2 S. 10.2 W. OF US62 \& } \\ & \text { S115 } \end{aligned}$	85.2	0	1997	50	2016
3. N. 8.6 W. OF I-44-SH36	93.1	0	1997	100	2016
3. N. 7. W. OF I-44-SH36	95.6	0	1997	100	2016
1.5 E. \& 1.2 N. OF JCT. I44\&SH36	99	0	1997	150	2016
4 E. \&. 1 S. OF JCT. SH65 \& SH17	100	0	1997	100	2016
1 N. \& 1.5 E. OF JCT. I44 \& SH36	99	0	1997	150	2016
. 8 N. . 4 E OF SH 49	86.8	0	1997	100	2016
0.1 MI. S. OF LEE BLVD.	70.4	0	1997	4620	2016
0.4 MI. E.OF W. 38 ST	95.9	0	1997	287	2016
7.5 MI. S. 3.3 W. CACHE	100	0	1998	100	2016
.5 E. 1.5 S. OF FAXON	82.5	0	1998	79	2016
.5 E. 2.8 S. OF JCT. SH 65 \& SH17	100	0	1998	25	2016
$\begin{aligned} & \text { 2 E. \& 2.4 N. OF JCT. SH7 \& SH } \\ & 65 \end{aligned}$	91.6	0	1998	50	2016
1 E. 1.8 S. OF JCT. SH 65 \& SH17	83	0	1998	25	2016
1.4E 3S OF JCT. SH65 \& SH 17	100	0	1998	50	2016
7N\&3E OF JCT. SH65\&17	95.1	0	1998	100	2016
7.5 MI N \& 12.3 MI N JCT.	68	0	1998	50	2016
7. N 12. W OF SH 49	82.6	0	1998	24	2016
1.9 E \& 2.3 S JCT. US62/SH	81.1	0	1998	100	2016
. 8 E 4. N OF I-44-SH36	96	0	1998	125	2016
5N \& 6.5W SH-49/SH-58	61.8	1	1998	100	2016
2N 1.2E I-44/SH36	97	0	1999	100	2016
4.4E OF JCT. US277\&SH17	77.8	0	1999	100	2016
3.9E OF JCT. US277\&SH17	85	0	1999	100	2016
4S 3.8W OF JCT. I-44\&SH36	64	0	1999	75	2016
3N .3W OF JCT. US277/SH17	74.7	0	1999	100	2016

2040 Comanche County Long Range Transportation Plan

Location	Sufficiency	FOSD	Year Built	ADT Total	ADT Year
4S 7.9W OF JCT. SH7/SH65	74.7	0	1999	100	2016
1S\&1.6E OF JCT. SH7\&SH65	100	0	1999	100	2016
2. N 8.6 W OF I-44-SH36	89	0	1999	100	2016
1.8 MI. N. JCT. SH49	89.3	0	2000	5700	2016
4.6S 1W JCT. US277 / US62	89.8	0	2000	200	2016
6S\&5.8W OF JCT. SH7\&SH65	96	0	2000	156	2016
0.3M N. OR GORE BLVD.	84.7	0	2000	4820	2016
.8N CACHE RD.	94.3	0	2000	5220	2016
13.6N 11W JCT. US62/SH115	87.2	0	2001	50	2016
5S 6.4E JCT. US62 / SH115	75.8	0	2001	100	2016
2S 7.7N JCT. I-44 / S.H.36	85	0	2001	100	2016
2S 14N JCT. I-44 / S.H. 36	86.8	0	2001	100	2016
.7 S 9.3 W OF I-44	95.5	0	2001	100	2016
5.3N OF INDIAHOMA	99.9	0	2001	100	2016
3.2 S 10.2 W US62 SH115	99.3	0	2001	50	2016
3.2 S 10.1 W US62 SH115	100	0	2001	50	2016
1.5W 1N JCT. I-44/S.H. 49	69	1	2001	50	2016
3.1S 1W JCT. US277 / US62	100	0	2001	200	2016
4E 2.8N JCT. US277/HE.					
BAILEY	73	0	2001	200	2016
5N .2W JCT. SH7 / SH65	96	0	2001	100	2016
3. E 5.3 S OF US62-SH115	100	0	2001	100	2016
1.6 MI. N. JCT.US277	85.2	0	2002	3700	2016
2W 7.4S OF CACHE	100	0	2002	50	2016
3N 2.4E SH 7/65	89.1	0	2002	167	2016
1N .8E JCT. SH58/SH49	100	0	2003	100	2016
2W 4S OF JCT. US277/US62	99.9	0	2003	100	2016
.6E 2.2N .7E OF FLETCHER	100	0	2003	100	2016
2S 1.1E OF JCT. US277/SH17	88	0	2003	100	2016
NE OF LEE BLVD. TO GORE	85.2	0	2003	2025	2016
7W 0F I-44	91	0	2004	4000	2016
HIGHWAY 62 RAMP	96.6	0	2004	5000	2016
4S 1.6E OF CACHE	100	0	2004	100	2016
4S 2.4E OF CACHE	100	0	2004	100	2016
1W 7.2S OF CACHE	99.9	0	2004	100	2016
1.4S 3.7E JCT. I-44/SH 36	100	0	2004	50	2016
3.5 E STERLING, 1S OK51	100	0	2004	100	2016
2W 6.2N OF INDIAHOMA	73	1	2004	100	2016

Location	Sufficiency	FOSD	Year Built	ADT Total	ADT Year
1N 3.1E OF JCT. I-44 \& SH3	100	0	2005	66	2016
.3S OF CACHE RD.	80.4	0	2005	5420	2016
.2E 53RD ST.	98	0	2005	220	2016
1.2W OF CACHE	85.9	0	2006	1187	2016
1.2W .2S OF CACHE	86.5	0	2006	1187	2016
7N .4E OF CLOUDY	99	0	2006	118	2016
2W 7.9S OF JCT. SH7/SH65	97	0	2006	75	2016
5E .5N OF JCT. SH17/SH65	100	0	2006	100	2016
1S 3E OF JCT. SH17/SH65	99	0	2006	120	2016
1.3N BETHEL,1W STEPHENS					
CL	99	0	2006	168	2016
3E 1.7N OF S.H. 7/S.H. 65	99	0	2006	168	2016
0.1N OF U.S. 62	83.7	0	2007	26600	2016
4.0S,0.9E OF U.S.277/SH17	100	0	2007	100	2016
2N 1.8W S.H. 7/S.H. 65	97	0	2007	100	2016
1S 5.2W OF S.H. 7/S.H. 65	93.1	0	2007	100	2016
6S 2.6W JCT. S.H. 7 S.H.65	70.6	0	2007	156	2016
12.4 MILES N. OF SH-36	97.9	0	2008	11400	2016
12.4 MILES N. OF SH-36	97.9	0	2008	12400	2016
5N 2.9 JCT. SH7 / SH65	71.2	0	2008	161	2016
3E 4.9S OF SH7 \& SH65	84.7	0	2008	161	2016
1.8S .2W OF JCT. SH 65/17	94.9	0	2008	75	2016
1E 3.9S JCT. SH7 / SH65	88.5	0	2008	75	2016
1.6E OF JCT. S.H. 65	100	0	2009	3950	2016
6W \& 5.5S 0F 277/36	96	0	2009	50	2016
2N OF US62, 2.5W FT. SILL	100	0	2009	100	2016
0.8S, 4.7E OF I-44/SH-36	98.9	0	2009	250	2016
1W .2S OF PUMPKIN CTR	72.9	0	2009	100	2016
2N, 3.3E OF JCT. I-44\&SH36	92.1	0	2009	75	2016
5W, .1N HWY 7 AND HWY 65	100	0	2009	200	2016
1E .4N OF S.H. 65/S.H. 17	99	0	2009	125	2016
1E .3N OF S.H. 65/S.H. 17	99	0	2009	125	2016
1E .5N OF S.H. 65/S.H. 17	99	0	2009	125	2016
2.1S .5W JCT. US62/SH115	100	0	2010	150	2016
1S, 5.9W OF GERONIMO	94.6	0	2010	150	2016
3.5N OF SH7/SH65 JCT.	89.7	0	2010	100	2016
6.2N 4W JCT. SH-17/SH 65	100	0	2010	100	2016
1500' S OF RR ST. \& LEE	99.9	0	2010	1585	2016

Location	Sufficiency	FOSD	Year Built	ADT Total	ADT Year
4W 4.1N OF JCT. 277/17	94.1	0	2011	100	2016
2S OF I-44/S.H. 7	99.9	0	2011	360	2016
5.9 E OF JCT. S.H. 65	96	0	2012	1300	2016
2.1S OF JCT. S.H. 17	96.7	0	2012	1200	2016
4.7E 2N OF US 277/SH 17	100	0	2012	100	2016
.4N OF CACHE ROAD	100	0	2012	500	2016
.17N OF MEERS	99.9	0	2013	390	2014
1.2 E JCT. S.H. 65	96	0	2013	1300	2016
1.6 E JCT. S.H. 65	96	0	2013	1300	2016
2S 2.5E OF INDIAHOMA	98.3	0	2013	200	2016
6.2 E 1N OF JCT. US277/SH17	97	0	2013	100	2016
.6W 0F JCT. S.H. 65	94.6	0	2014	1800	2016
JCT. U.S. 62 \& I-44	91.2	0	2014	8950	2016
2.2S 2.3E OF US 62/SH 115	100	0	2014	76	2016
3S 2.7E OF JCT. SH7/SH65	100	0	2014	50	2016
3S 2.7E OF JCT. SH7/SH65	96.8	0	2014	50	2016
1S .5W OF I-44/SH36	100	0	2016	100	2016
3S .5W OF SH7/SH65	99	0	2016	100	2016
1S .4E OF JCT. I-44/SH 7	99.9	0	2017	250	2016
3E 4.4N SH7/SH65	96	0	2017	161	2016
2S 5.2W OF I-44 / SH 36	97	0	2017	59	2016
3E 4.5N OF JCT. SH7/SH65	96	0	2017	161	2016
1S .6W OF JCT. I-44/SH36	100	0	2017	66	2016
5.4E 1N of JCT. US277/SH17	85.3	0	2018	100	2016
2E 1.9S of US62/SH115	99	0	2018	181	2016
Source:0DOT					

Source: ODOT

Appendix 2.22: National Highway Freight Network - Oklahoma

The NHFN includes the following subsystems of roadways:

- Primary Highway Freight System (PHFS): This is a network of highways identified as the most critical highway portions of the US freight transportation system determined by measurable and objective national data. The network consists of 41,518 centerlines miles, including 37,436 centerline miles of Interstate and 4,082 centerline miles of non-Interstate roads.
- Other Interstate portions not on the PHFS: These highways consist of the remaining portion of Interstate roads not included in the PHFS. These routes provide important continuity and access to freight transportation facilities. These portions amount to an estimated 9,511 centerline miles of Interstate, nationwide, and will fluctuate with additions and deletions to the Interstate Highway System.
- Critical Rural Freight Corridors (CRFCs): These are public roads not in an urbanized area which provide access and connection to the PHFS and the Interstate with other important ports, public transportation facilities, or other intermodal freight facilities.
- Critical Urban Freight Corridors (CUFCs): These are public roads in urbanized areas which provide access and connection to the PHFS and the Interstate with other ports, public transportation facilities, or other intermodal transportation facilities.

Primary Highway Freight System (PHFS) Routes			
\quad	START ROUTE No POINT	END POINT	LENGTH (MILES)
	I44	U75	4.9
I240	I44	I35	4.61
I244	OK3R	I44	3.52
I35	TX/OK Line	OK/Ks Line	236.13
I40	I35	OK/AR line	151.76
I40	I240	4.68 Miles North of I40	7.92
I44	I35	OK/MO Line	194
I44	OK6P	I44	6.4
U412			787.19

PHFS Intermodal Connectors			
FACILITY ID	FACILITY NAME	FACILITY DESCRIPTION	LENGTH (MILES)
OK2L	Williams Pipeline Station	21st St. (33rd W. Avenue to Burlington Northern RR at 23rd St.)	1.27
OK3R	Burlington Northern Railroad	23rd St. (BN Terminal to Southwest Avenue) SW Avenue (23rd St. to I-244 ramp.)	0.56
OK5P	Port of Catoosa	SR 266 (Port to US 169)	11.42
0K6P	Johnston's Port 33 (Verdigris River near Muskogee)	From US 412/NS 414, south 0.25 miles, east 1 mile to Terminal	1.14
Subtotal			14.39
PHFS TOTAL			801.58

Interstate Not on the PHFS				
ROUTE No.	START POINT	END POINT	LENGTH (MILES)	
I235	I40	I44	5.14	
I240	I35	I40	11.68	
I244	S. 21st St.	I44	12.24	
I44	TX/OK Line S66	I240	114.91	
I44	I244 S	I35	7.7	
Subtotal			2.5	

Appendix 3: Future conditions

Appendix 3.1: 2040 Population and Employment Projection by TAZ

TAZ No.	$\begin{aligned} & 2010 \\ & \text { POP. } \end{aligned}$	$\begin{aligned} & 2040 \\ & \text { POP. } \end{aligned}$	$\begin{gathered} 2040 \\ \text { EMPL. } \end{gathered}$
1	389	389	15
2	627	630	10
3	535	700	265
4	918	1000	-
5	716	785	-
6	530	565	-
7	274	400	35
8	897	975	25
9	502	525	-
10	346	350	-
11	918	1000	45
12	501	800	294
13	619	619	75
14	615	850	10
15	141	141	-
16	500	500	92
17	185	185	-
18	680	750	-
19	470	700	10
20	541	875	-
21	330	875	-
22	651	875	-
23	569	875	-
24	27	27	-
25	62	215	-
26	2499	2600	385
27	48	50	-
28	86	90	-
29	31	31	-
30	740	780	15
31	232	240	-
32	453	465	-
33	666	695	25

TAZ No.	2010 POP.	2040 POP.	2040 EMPL.
34	121	121	-
35	590	590	30
36	460	460	30
100	490	700	25
101	246	350	300
102	342	700	25
103	74	74	115
104	432	432	85
105	85	85	300
106	674	700	45
200	634	650	205
201	19	19	115
202	633	635	65
300	504	504	75
301	386	386	120
400	317	317	30
401	447	447	40
402	1132	1132	335
403	811	900	325
404	220	604	330
500	645	645	265
501	642	635	175

Source: US Census, SORTPO

Appendix 3.2: ODOT 8 Year Construction Work Program FFY 2019-2026 Map

Appendix 4: Public Participation

Appendix 4.1: Public Survey
Question 1: What county do you reside in?

Question 2: Which City/Town do you live in?

Question 3: If you work or attend school outside the home, how many days per week?

Question 4: What City/Town do you work in?

Question 5: In which county do you work or attend school?

Question 6: What type of transportation do you use most often to go to work/school?

Question 7: Number of miles traveled (round trip) for work/school?

Question 8: How much TIME does it usually take to travel (round trip) to work/school?

Question 9: What is your usual method of transportation for OTHER trips such as shopping, appointments, or social outings

Question 10: How many miles do you usually travel for these other trips (per outing)?

Question 11: Please indicate how important each of these transportation system components is to you:

Question 12: Which do you think should be a priority when selecting transportation projects?

Question 13: What are specific locations with traffic problems that you encounter?

General Location	Description
	Rough roads, worn out signage, access to interstate has multiple towns funneling through a single town who's infrastructure was not intended for the amount of people the town has grown to let alone multiple towns that have to go through for access to I44 westbound.
	West Lee. The road just continues to get worse.
Cache, County	The city of Cache \& surrounding country area roads are steadily in decline. The only major roads that have been cared for are Hwy 115 (somewhat), Cache Road in front of Cache High School \& Lee Blvd. Traffic itself is fairly light. The potholes are my greatest area of concern in both the city and outlying county areas in the countryside
Cache	All of Cache Road in front of Cache Public Schools. It needs a center turning lane really bad!
Cache	Any street in Cache city limits and the rural roads that surround Cache. Lee Blvd. and Crater Creek. If you are on Crater Creek turning onto Lee Blvd. you have to pull into the oncoming lane just to see if you can turn onto Lee. This has been an issue for many many years.
Cache	Giant potholes in the roads around Cache
Cache	Congestion on old highway 62 during school hours and sporting events. Crosswalks could be better
Cache, County	Hwy 115, rural roads around Cache, Hwy 49
Cache, County	115 I front of Lil Moma's Cafe. Cannot safely see when vehicles park on west side near road
County	County roads need to be completely replaced
County	Rogers Lane, Deyo Mission County
Cache road, sometimes Sheridan red. Many county roads. Main roads tore up still, a four road I. Front of house was paved and they tore it out and now dirt. Don't understand. Airport red in cache on side going to baseline needs fixed bad. A lot of county roads	
County Lawton,	Sheridan Road Lawton. Crater Creek Cache. County
Schools, 115	
Lee Blvd between Deyo and 112th is literally crumbling. It is a very	
very dangerous section of road.	

General Location	Description
County	Rough county roads. Lots of potholes
County	The roads which are part of the county are in such bad shape it is making it hazardous to drive from home to highway. On North Drive, the road is so narrow that cars drive in the center of the paved road, with no white lines, which is going to cause a serious accident considering the hills and blind spots.
County	Curves on old Cache Road, people consistently crossing over the double yellow line, because the roadway has lack of space, and no shoulders. Several accidents have occurred on this roadway around the curves and on a daily basis I passed people who crossed the double yellow line.
County, Key Gate, Lawton	Besides downtown Lawton I would say the entrance to Key Gate at Ft. Sill is dangerous. 82nd Street leaving Lawton south needs to be improved very much, (no shoulders). There needs to be a 4 lane bypass on the south side of Lawton. Must small roads in and out of all towns in Comanche County need better shoulders.
County, Lawton	Old Cache Rd and Deyo Mission Road Lee Blvd and Deyo Mission Road
County, Lawton	Lee Blvd, VERY bumpy from post oak to hey 115, 119 street and Lee to 2nd street AWFUL.
County, Lawton	Deyo mission and cache road. All of Lawton. Roads in cache that aren't main roads are in terrible shape.
County, Lawton	Red Elk Rd and Lee Blvd up to Good Year. Road is uneven, road shoulders are caving in. Pothole repairs are not holding up to everyday traffic, and there are no shoulders in the event of an emergency.
Elgin	Elgin
Elgin	Hwy 277 in Elgin. Need bypass off ramp to Fletcher!!!
Elgin	Elgy 277 and A St. Elgin ok
Elgin	Elgin
Elgin	Elgin Flgin
Fletcher had access to interstate without driving through Elgin	

General Location	
Elgin	Highway 277 through Elgin; toll gate at Elgin;
Elgin	Elgin Hwy 277
Elgin	I44 Elgin exit for towns north of Elgin (fletcher, Cyril, cement)
Elgin	ELGin, OK Need access to the interstate from Fletcher, please!
Elgin	Highway 277 in Elgin between I44 and SH 17 signal needs to be widened to either 4 lanes or provide center turn lane.
Elgin	The traffic in Elgin backs up daily. With the interstate coming off on Hwy 277 going thru town there is one light that controls traffic. So trying to pull out into traffic from business is almost impossible.
Elgin	Congestion on Main St in Elgin
Elgin	Exit ramp on I-44 to Elgin, OK
Elgin	I-44 \& Elgin Ok. Off \& on ramp
Elgin	Gore Blvd and I-44. Sheridan between Ferris and Cache. I-44 at Elgin exit.
Elgin, Lawton	
Fletcher, Elgin	The speed limit in the business section of Fletcher on Hwy 277 should be lowered to 35 MPH. Going thru the City of Elgin is a nightmare at certain times of the day. Traffic backed up, people trying to get in and out of business. Very dangerous.
I-44	I44 condition, tolls, dangerous bridges to and from Lawton and surrounding small towns
I-44	Construction on I-44 near Rogers Lane.
I-44/Key Gate	I-44 and Key Gate
Lawton	West Gore Exit off the turnpike. Both ways off are beyond strange how they are arranged
Lawton	Sheridan Road between Gore and Cache Road
Lawton	Lee Blvd ,SW Sheridan,11th St
Lawton	Gore Blvd. between 26th and 31st
Lawton	Rogers Lane in Lawton - there are frequent wrecks due to the westbound traffic backups at the lights on 38th and 52nd.
Lawton	Lawton...caution/red lite jumpers potholes. Everywhere! No sides on many rural roads
Lawton	Lache Rd.
Lawton! Cache Rd, Rogers Lane limit on Rogers Lane.	
Lawton on Rogers Lane Gore and Lee	

General Location	Description
Lawton	In general, all major intersections in Lawton have traffic light timing issues. It appears they have been set to work for the very short timeframes of congestion
Lawton	Truck traffic around the industrial complex of Lawton Ok
Lawton, I44	Roger Lane and 44, then Fort Sill \& I44
Medicine Park	The entire road through Medicine Park from Highway 49. There are many holes and patches and sometimes unsafe for two cars to pass both going in opposite directions. Many of the roads in Medicine Park are in very poor condition.
Meers/Porter	Meers/porter hill intersection 62 and 277. No shoulder on porter hill road from 62 to 115. Very dangerous.
Hill	Cole St. \& Hwy 277. North St. \& Hwy 277
	Staying in the lane when turning and then signal to change lanes at all intersections with double lanes.
	All over town
	intersection at Sonic is very busy
	There is a need for public transportation (bus route) to the west side Industrial park (Goodyear Blvd \& surrounding streets)
	Service of roadways
	Dangers intersections, horrible road conditions
	Not much...I live in the country
	Nothing in my general routine but have seen some of the roads and in residential areas trees blocking the view of oncoming traffic
	Local streets. Lots of potholes on residential streets.
	Water drainage clogged ditches and speeding on 5th St.
	Large potholes, poor drainage on culvert at intersection.
	All roads
	Roads are in bad shape
	School zone needs traffic lights
	The little side roads
	Rural Areas
	Chickasha!

Question 14: Your age group:

Question 15: Gender:

Question 16: Household income:

Question 17: Which race/ethnicity best describes you? (Please choose only one.)

Question 18: Please feel free to provide additional comments regarding transportation improvement needs:

Please add an on and off ramp at Fletcher to get on I-44 to help get around Elgin's traffic prompt repair of potholes in roads, paint or reflecting lanes of roadways, more visibility of roadways at night.
The roads I use on a daily basis are rough and are littered with potholes. These roads are costing me additional maintenance fees for my car. I.e. Front end alignments, new tires, etc. Most of the major roads in Oklahoma are in extremely poor condition. I-44 and State Highway 62, just to name a couple.
Roads Need shoulders, sidewalks for pedestrian traffic, a rail system from town to town in Southwest Oklahoma would be absolutely pivotal especially for lower income people who need that transportation to get from point a to point B for example from There needs to be an on/off ramp south of Fletcher. This would take a huge amount of traffic off of Elgin. Indiahoma to Lawton. Considering they're already railroad tracks; a passenger rail line would not be that difficult to implement. This would also bring more jobs to the area as well as more industry and people being able to get to work and obtain work. Roadways also need fog lines in addition to well striped roads. Roads need to be better built the sorry excuse of Oklahoma is built on sand and clay is no excuse for having poorly constructed roads. There are many other places in the nation and worldwide who have the same type of soil that we do and yet the roads are better than ours. So much to the point that I'm actually quite surprised that the public does not sue the local government's because of wear and tear on their vehicles so hard because of the roadways. There are also roadways that are not maintained whatsoever that should be Counties responsibility and yet it's the resident's responsibility to maintain the roadway to get to their home.

There needs to be an on/off ramp south of Fletcher. This would take a huge amount of traffic off of Elgin.
Airport road between Cache Road and Lee Blvd is like a roller coaster that throws your car in a bad direction.
Maybe a bus for older people or disabled people to be able to get to and from the local businesses.
same fix the roads
We have been waiting 30 years to get our road fixed. 30
Cache does not have a dedicated public transportation bus line or cab service.
Roads in small towns are hazardous and are too expensive for the repairs needed.
he roads should be fixed more often... we have horrible potholes everywhere in Lawton and Cache... just filling with gravel doesn't help and is hard on our vehicles

Potholes

SW Copperfield Place in Cache Oklahoma needs to be paved!
Improve the interior roads in cache that are not main roads. I feel as though the nonessential main roads are neglected and cause vehicle damage and are unsafe.
Stop making straight roads crooked!

Need a stop light at 277 and Elgin ok
Replace timed lights with arrival sensors. Additional i44 exit north of Elgin for northern towns

More children at play signs. And more caution signs for wild game crossing.
Rural roads are in bad shape.
There needs to be immediate attention to maintenance issues that affect safety on all rural roads
Thank you for your continued concern for the safety of our citizens.
I grew up in Caddo county in Anadarko and I still have family in Anadarko. They need public transportation for medical, work, shopping, etc. A lot of people have no transportation.
Having good shoulders and markings on rural roads if very important South west OK is not getting their fair share of \$ to improve our roads and bridges.

Appendix 4.2: Pubic Outreach

On January 31, 2019, a stakeholder's meeting is scheduled to be held at the Great Plains Technology Center. Prior to this meeting invitation were sent to local stakeholders.

SORTPO staff distributed a copy of the Comanche County 2040 LRTP on July 30, 2019 to the following local agencies: Comanche County Commissioners, Cities and towns in Comanche County, the Lawton Metropolitan Planning Organization

A legal notice advertising SORTPO's public hearing to adopt the Comanche County 2040 LRTP was placed in The Lawton Constitution. The SORTPO Policy Board held a public hearing on July 25, 2019 to receive comments on the Comanche County 2040 LRTP prior to its' adoption.

Stakeholder Invitation Letter

The Southwest Oklahoma Regional Transportation Planning Organization ("SORTPO") is the regional transportation planning organization for southwest Oklahoma. Within this region are 16 counties, including the eight counties within the Southwestern Oklahoma Development Authority (SWODA) Council of Government and the eight counties comprising the Association of South Central Oklahoma Government (ASCOG). SORTPO is in the process of developing a regional long-range transportation plan for the sixteen counties.

A stakeholder meeting is scheduled to introduce the long-range transportation planning process and to engage you in the early stage of this plan development.

Date: Thursday, January 31, 2019
Time: 10:00 am
Location: Great Plains Technology Center
Lawton, Ok

This meeting will present opportunities for you to share your areas of concern as well as to help identify transportation programs to meet the needs of the future. Please share this invitation with your associates, as all are welcome, and the meeting is open to the public. We look forward to seeing you there!

August 26, 2019
PRESS RELEASE
"For Immediate Release"
Southwest Oklahoma Regional Transportation Planning Organization 420 Sooner Dr.
PO Box 569, Burns Flat, OK 73624
580-562-4882

Comment period on the 2040 Comanche County Long Range Transportation is open for 30 days

The Southwest Oklahoma Regional Transportation Planning Organization (SORTPO) is seeking public comment on the 2040 Comanche County Long Range Transportation Plan. The Long Range Transportation Plan establishes the goals and transportation strategies for addressing the County's transportation needs. Prior to adoption of the plan there is a 30 -day public comment period which will end on September 24, 2019. During this comment period individuals, agencies, and organizations are encouraged to review the document and submit comments. The Plan is available from the SORTPO offices located at

ASCOG
Tom Zigler, SORTPO
802 W. Main
Duncan, OK 73534

SWODA
Julie Sanders, SORTPO, 420 Sooner Dr., PO Box 569, Burns Flat, OK 73624

August 20.2019
Ms. Julic Sanders, Transportation Dircetor
South Westem Oklahoma Developnent Authority
P.O. Box 569

Burns Filil, OK 73624
RE: File प्п2540-19: SORTP Proposed Comanche County 2040 Long Range Transporlation Plan
Dear Mis, Sanders:
On August 1,2019 , we received for review and comment the Draf Comanche Councy 2040 Long Range Transpoctation Plan witl your letter dated August l, 2019, prepared by Southwest OkJahoma Requonal Transportation Ilanning Organization (SORTIO), We understand that the long range plan uมd devtloped in swoperation with the Ollahoma Depanment of Transportation (ODOT) and Federal Highway Administation (FHW,A) and as projects dre selected that will receive assistance from FIWh then per Section 106 of the National IIstoric Preservation Act (NIIPA) and the Advisory
 consultation with our office and with the State Aschaeologist widt the OkJahoma Archeological Suryey (DAS) to revicw and provide comments on project effect to historic propertics.

We would like ha prowide sirne carments and tecommentations tegurding the information on histocic resources within the Drall 2040 , arny Range Transportation Plan.
(1) Recommend that the State laws reyardity the probection of burials and temeterids be inclubld in Chapter 2, "Current Conditions" and within Appendix 2.8, "Environtnental and Development Cancerss."
 Gravestone or Other Cemetery Ormanem:

Title 21, Chapter 47, 5eclion 1|68.4: Drry to Report Discovered Rewaits; and

(2) The report does not inctude properties that ate lisced in the National Register of Tristoric Plates.s (NRHP) properties decermined eligible for the NRHP (DOEs) or the Oklahoma Landmarks Inventory (OLI). This intormation is updated on a quarterly basis and is available onitine. Ith additions we recommend for review our Statewide Fistoric Preservation Plan that is uphated on a 5 year cycle. With regadd to historic resources and ODOL project planding. we recomment the inclusion of the bridge reports and program comments that nay be telerenced as relevant context for the long range plan. (S'ee links on l'age 2 of dhis letter.)

Ms. Sanders

August 20, 2019
Page 2

RE: File \$2540-19; SORTPO Proposed Comanche County 2040 Long Range Transportation Plan

National Register of Historic Places (NRHP)
http:/ion 2 shpo.okstate.edu/OueryDara.aspx
Properties detemined cligible for the NRHP (DOEs)
btlpsi//www.okhistory.org/shpo/docsearch.php
Oklahoma Landmarks lnventory (OLI)
hetps://www.okhistery.pre/shpo/shpeplarniny htm
Oklahoma's Statewide Preservation Plan
https://wwow,okhistory.org/shpoislateplan,htm
ODOT reports and program comments
htm://waw.odotculturaliesources.info/bridees.html
You or your representative are welcome to review the hard copy files for both National Register and OLI resources in our office, and you should contact Sara Wemcke, Historic Preservation Specialist, at 405/522-4478 to schedule an appointment for this parpose.
(3) Further, the appendix does not provide information on archaeological resources that is available from the State Archaeologist at the OAS. The OAS maintains the site files for the State's archaeological resources. For questions about acsess to that information, contact Dr. Kary Stackelbeck, State Archaeologist, at 405/325-7211.

If yau have any questions, please call Catharine M. Wood, Historical Archaeologisi, al 405 521-6381. Please reference the above underlined file number when responding. Thank you.
Sincerely,

Lynda Ozan
Deputy State Historic
Preservation Officer
LO:pm

[^0]: Source: US. Bureau of Labor Statistics. Release: Unemployment in States and Local Areas (all other areas) Growth Rate Calculations | US recession dates

[^1]: Source: 2013-2017ACS Commute Characteristics

[^2]: Source: ODOT Traffic Engineering Div. Collision Analysis and Safety Branch
 *Include incapacitating, non-incapacitating and possible injuries

